苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
基于弥散旋转裂缝理论的UHP-FRC三维材料模型
Research on UHP-FRC Three-dimensional Materials Model Based on Smeared Rotating Crack Theory
2016年第12期
UHP-FRC;LS-DYNA;本构模型;弥散旋转裂缝;应变强化
UHP-FRC;LS-DYNA; Constitutive model; Smeared rotating crack; Strain hardening
2016年第12期
1000-4637(2016)12-48-05
张晓悦1,王 栋2
1.浙江水利水电学院 水利与环境工程学院,杭州 310018; 2.浙江省水利水电工程质量与安全监督管理中心,杭州 310012

张晓悦1,王 栋2

浏览量:
1000
摘 要:基于Rots弥散裂缝理论以及旋转裂缝理论,在有限元软件LS-DYNA的UMAT自定义界面采用FORTRAN语言建立UHP-FRC的三维本构材料模型,该模型可以反映材料在拉伸荷载作用下的应变强化现象,而且在复杂的微小开裂过程中裂缝平面可以随主应力方向的变化而旋转。利用该本构模型对UHP-FRC材料的直接拉伸试验和标准梁弯曲试验进行数值模拟,模拟得到的应力-应变曲线以及荷载-挠度曲线与实验结果呈良好的一致性,表明所建立的模型可以较为合理地模拟UHP-FRC在拉伸荷载作用下的本构行为。 Abstract: Based on the Rots diffusion fracture theory and Rotation fracture theory, a three-dimensional constitutive material model for the finite element simulation of UHP-FRC is established in the finite element software LS-DYNA by using FORTRAN and the user-defined material model interface. The proposed model considers the special strain hardening period, and the normal directions of the crack planes are coincidee with the principle stress directions during the multiple narrow cracking process. The performance of the proposed model is demonstrated by a direct tensile test as well as a bending test of a standardized beam. The simulated stress-strain curve and load-deflection curve are in good agreement with the experimental results, which suggest that the developed model can reasonably simulate the constitutive behavior of UHP-FRC under tensile loading.
英文名 : Research on UHP-FRC Three-dimensional Materials Model Based on Smeared Rotating Crack Theory
刊期 : 2016年第12期
关键词 : UHP-FRC;LS-DYNA;本构模型;弥散旋转裂缝;应变强化
Key words : UHP-FRC;LS-DYNA; Constitutive model; Smeared rotating crack; Strain hardening
刊期 : 2016年第12期
DOI :
文章编号 : 1000-4637(2016)12-48-05
基金项目 :
作者 : 张晓悦1,王 栋2
单位 : 1.浙江水利水电学院 水利与环境工程学院,杭州 310018; 2.浙江省水利水电工程质量与安全监督管理中心,杭州 310012

张晓悦1,王 栋2

摘要
参数
结论
参考文献
引用本文

摘   要:基于Rots弥散裂缝理论以及旋转裂缝理论,在有限元软件LS-DYNA的UMAT自定义界面采用FORTRAN语言建立UHP-FRC的三维本构材料模型,该模型可以反映材料在拉伸荷载作用下的应变强化现象,而且在复杂的微小开裂过程中裂缝平面可以随主应力方向的变化而旋转。利用该本构模型对UHP-FRC材料的直接拉伸试验和标准梁弯曲试验进行数值模拟,模拟得到的应力-应变曲线以及荷载-挠度曲线与实验结果呈良好的一致性,表明所建立的模型可以较为合理地模拟UHP-FRC在拉伸荷载作用下的本构行为。

Abstract: Based on the Rots diffusion fracture theory and Rotation fracture theory, a three-dimensional constitutive material model for the finite element simulation of UHP-FRC is established in the finite element software LS-DYNA by using FORTRAN and the user-defined material model interface. The proposed model considers the special strain hardening period, and the normal directions of the crack planes are coincidee with the principle stress directions during the multiple narrow cracking process. The performance of the proposed model is demonstrated by a direct tensile test as well as a bending test of a standardized beam. The simulated stress-strain curve and load-deflection curve are in good agreement with the experimental results, which suggest that the developed model can reasonably simulate the constitutive behavior of UHP-FRC under tensile loading.

关键词:
UHP-FRC;LS-DYNA;本构模型;弥散旋转裂缝;应变强化
扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

本文提出了一种适用于UHP-FRC材料在拉伸荷载作用下的三维本构模型。改进了Rots弥散裂缝理论并将其应用于UHP-FRC的应变强化阶段以及应变软化阶段中。当裂缝宽度较小时认为裂缝平面法线方向与主应变方向重合,裂缝平面随主应变方向的改变而旋转,当裂缝宽度大于一个临界值时裂缝平面便被固定而不再旋转,并用断裂能代替裂缝宽度进行判断。用FORTRAN语言在LS-DYNA软件中的用户自定义模块UMAT中建立模型,为了结合LS-DYNA软件主程序一起运行,本文给出了局部坐标变量与整体坐标物理量的转换方法。针对一个双钟形试件的单轴拉伸试验以及一个自由支撑的标准梁弯曲试验,建立相应的三维材料模型进行模拟试验,得到直接拉伸荷载作用下的单元应力-应变曲线以及间接拉伸荷载作用下的荷载-挠度关系曲线,模拟结果与试验结果呈良好的一致性。

[1] Voo Y. L., Nematollahi B., Mohamed A. B.. Application of ultra high performance fiber reinforced concrete-the malaysia perspective[J]. Sustainable Construction Engineering & Tech-nology,2012,3(1):26-45.
[2] Toutlemonde F.,Resplendino J.. Designing and Building with UHPFRC[M]. New York: John Wiley & Sons,2013:79-81.
[3] Maca P., Sovjak R., Vavrinik T.. Experimental investigation of mechanical properties of UHPFRC, Concrete and Concrete Structures 2013-6th International Conference[C]. Slovakia,2013:14-19.
[4] Florent B., Benjamin G., Pierre M., Francois T.. UHPFRC tensile behavior characterization: inverse analysis of four-point bending test results[J].Materials and Structures,2013,46:1337-1354.
[5] Park S. H., Kim D. J., Ryu G. S., et al. Tensile behavior of ultra high performance hybrid fiber reinforced concrete[J].Cement & Concrete Composites,2012,34:172-184.
[6] Han T.S., Feenstra P.H., Billington S.L.. Simulation of highly ductile fiber-reinforced cement-based composite components under cyclic loading[J].ACI Struct J,2003,100(6):749-757.
[7] Hung C.C., Li S.H.. Three-dimensional model for analysis of high performance fiber reinforcedcement-based composites[J]. Composites: Part B,2013,45(1):1441-1447.
[8] Suryanto B., Nagai K., Maekawa K.. Modeling and analysis of shear-critical ECC members with anisotropic stress and strain fields[J]. J AdvConcr Technol, 2010,8(2):239-258.
[9] Guo Y. H.,Han S. M.. Modeling of UHPFRC I-beam with linear complementarity problem[J]. Fracture Mechanics of Concrete and Concret Structures,2010(5):1437-1444.
[10] Astarlioglu S., Krauthammer T.. Response of normal-strength and ultra-high-performance fiber-reinforced concrete columns to idealized blast loads[J]. Engineering Structures, 2014,61:1-12.
[11] Rots, J. G.. Computational modeling of concrete fracture[D]. Delft University of Technology,1998.
[12] Karthik M., Reddiar M.. Stress-strain model of unconfined and confined concrete and stress-block parameters, Master thesis[D].Texas A&M University,2009.
[13] Wille K., Naaman A. E.. Fracture energy of UHP-FRC under direct tensile loading, FraMCoS-7 Int. Conf[C]. Jeju, Korea,2010:65-72. 
[14] Wille K., Naaman A. E., Sherif E. T., et al. Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing[J]. Materials and structures,2012,45:309-324.
[15] Dong J. K., Seung H. P., Gum S. R., et al. Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers[J]. Construction and Building Materials, 2011,25:4144-4155.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州