苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
水泥净浆流动度试验的流体静力学理论分析
2018年第2期
流动度试验;水泥净浆;屈服应力;流体静力学;表面张力;浸润性;浆体密度
Fluidity test; Cement paste; Yield stress; Hydrostatics; Surface tension; Wettability; Paste density
2018年第2期
1000-4637(2018)02-01-06
1000-4637(2018)02-01-06
国家重点研发计划项目(2017YFB0310100);高性能土木工程材料国家重点实验室开放基金课题((2014CEM001)。
王衍伟1,张倩倩1,冉千平1,刘加平2
1.高性能土木工程材料国家重点实验室,江苏苏博特新材料股份有限公司,南京 211103; 2.东南大学材料科学与工程学院,南京 211189

王衍伟1,张倩倩1,冉千平1,刘加平2

按照标准GB/T 8077—2012《混凝土外加剂均质性试验方法》[1],水泥净浆流动度试验(Fluidity test)是指将搅拌好的水泥净浆迅速注入截锥圆模内,垂直提起截锥圆模,同时开启秒表计时,任水泥净浆在玻璃板上流动至30s,用直尺量取流淌部分互相垂直的两个方向的最大直径,取平均值作为水泥净浆流动度的一种测试方法;又被称为微型坍落度试验(Mini-slump test)[2-5],具有工作量小、简单、经济、直观等特点,因而在外加剂匀质性检验、分散和分散保持性能评价、外加剂对水泥适用性试验甚至对水泥浆体流变特性的表征中得到广泛应用[5-8]。

  流动度,又称扩展度,这里记为Df,其计量单位为长度单位,通常用mm或者cm表示,净浆流动度的测量结果一般在10~30cm范围内。实践发现,净浆流动度的试验结果受用水量(水胶比)、水泥以及外加剂三大因素的影响[6]。由于水泥和外加剂各自均属于由无数化合物组成的复杂混合物,并且水泥中含有遇水后会发生一系列复杂的物理化学变化的活性混合材料,而外加剂中的部分组分也可能会出现腐败变质现象,所以水泥和外加剂的生产厂家、产品品种、生产批次、存放时期等因素的改变都可能使净浆流动度的检测结果发生改变。此外,截锥圆模的容积和几何形状[9],操作者的上提速度[10]、浆体和表面的浸润性[11]等因素也会对试验结果造成影响。

  本文从流体力学的角度对水泥净浆流动度试验进行分析,引入流体的“连续介质”假设[12],将水泥浆体看作具有状态方程ρ(P,T),本构方程τ(■,t),表面张力系数为Γ的“均质”流体。其中,状态方程是表征流体压强P、流体密度ρ、温度T等三个热力学参量的函数关系式,而流体本构方程是以应力τ、应变■和时间t之间的函数关系来描述流体的流变性质,其中,■=dγ/dt 为应变速率。

浏览量:
1000
按照标准GB/T 8077—2012《混凝土外加剂均质性试验方法》[1],水泥净浆流动度试验(Fluidity test)是指将搅拌好的水泥净浆迅速注入截锥圆模内,垂直提起截锥圆模,同时开启秒表计时,任水泥净浆在玻璃板上流动至30s,用直尺量取流淌部分互相垂直的两个方向的最大直径,取平均值作为水泥净浆流动度的一种测试方法;又被称为微型坍落度试验(Mini-slump test)[2-5],具有工作量小、简单、经济、直观等特点,因而在外加剂匀质性检验、分散和分散保持性能评价、外加剂对水泥适用性试验甚至对水泥浆体流变特性的表征中得到广泛应用[5-8]。   流动度,又称扩展度,这里记为Df,其计量单位为长度单位,通常用mm或者cm表示,净浆流动度的测量结果一般在10~30cm范围内。实践发现,净浆流动度的试验结果受用水量(水胶比)、水泥以及外加剂三大因素的影响[6]。由于水泥和外加剂各自均属于由无数化合物组成的复杂混合物,并且水泥中含有遇水后会发生一系列复杂的物理化学变化的活性混合材料,而外加剂中的部分组分也可能会出现腐败变质现象,所以水泥和外加剂的生产厂家、产品品种、生产批次、存放时期等因素的改变都可能使净浆流动度的检测结果发生改变。此外,截锥圆模的容积和几何形状[9],操作者的上提速度[10]、浆体和表面的浸润性[11]等因素也会对试验结果造成影响。   本文从流体力学的角度对水泥净浆流动度试验进行分析,引入流体的“连续介质”假设[12],将水泥浆体看作具有状态方程ρ(P,T),本构方程τ(■,t),表面张力系数为Γ的“均质”流体。其中,状态方程是表征流体压强P、流体密度ρ、温度T等三个热力学参量的函数关系式,而流体本构方程是以应力τ、应变■和时间t之间的函数关系来描述流体的流变性质,其中,■=dγ/dt 为应变速率。
英文名 :
刊期 : 2018年第2期
关键词 : 流动度试验;水泥净浆;屈服应力;流体静力学;表面张力;浸润性;浆体密度
Key words : Fluidity test; Cement paste; Yield stress; Hydrostatics; Surface tension; Wettability; Paste density
刊期 : 2018年第2期
DOI : 1000-4637(2018)02-01-06
文章编号 : 1000-4637(2018)02-01-06
基金项目 : 国家重点研发计划项目(2017YFB0310100);高性能土木工程材料国家重点实验室开放基金课题((2014CEM001)。
作者 : 王衍伟1,张倩倩1,冉千平1,刘加平2
单位 : 1.高性能土木工程材料国家重点实验室,江苏苏博特新材料股份有限公司,南京 211103; 2.东南大学材料科学与工程学院,南京 211189

王衍伟1,张倩倩1,冉千平1,刘加平2

按照标准GB/T 8077—2012《混凝土外加剂均质性试验方法》[1],水泥净浆流动度试验(Fluidity test)是指将搅拌好的水泥净浆迅速注入截锥圆模内,垂直提起截锥圆模,同时开启秒表计时,任水泥净浆在玻璃板上流动至30s,用直尺量取流淌部分互相垂直的两个方向的最大直径,取平均值作为水泥净浆流动度的一种测试方法;又被称为微型坍落度试验(Mini-slump test)[2-5],具有工作量小、简单、经济、直观等特点,因而在外加剂匀质性检验、分散和分散保持性能评价、外加剂对水泥适用性试验甚至对水泥浆体流变特性的表征中得到广泛应用[5-8]。

  流动度,又称扩展度,这里记为Df,其计量单位为长度单位,通常用mm或者cm表示,净浆流动度的测量结果一般在10~30cm范围内。实践发现,净浆流动度的试验结果受用水量(水胶比)、水泥以及外加剂三大因素的影响[6]。由于水泥和外加剂各自均属于由无数化合物组成的复杂混合物,并且水泥中含有遇水后会发生一系列复杂的物理化学变化的活性混合材料,而外加剂中的部分组分也可能会出现腐败变质现象,所以水泥和外加剂的生产厂家、产品品种、生产批次、存放时期等因素的改变都可能使净浆流动度的检测结果发生改变。此外,截锥圆模的容积和几何形状[9],操作者的上提速度[10]、浆体和表面的浸润性[11]等因素也会对试验结果造成影响。

  本文从流体力学的角度对水泥净浆流动度试验进行分析,引入流体的“连续介质”假设[12],将水泥浆体看作具有状态方程ρ(P,T),本构方程τ(■,t),表面张力系数为Γ的“均质”流体。其中,状态方程是表征流体压强P、流体密度ρ、温度T等三个热力学参量的函数关系式,而流体本构方程是以应力τ、应变■和时间t之间的函数关系来描述流体的流变性质,其中,■=dγ/dt 为应变速率。

摘要
参数
结论
参考文献
引用本文

 摘   要:从流体力学的角度对水泥净浆流动度试验开展研究,在考虑流体表面张力和表面浸润性的情况下,对流体屈服应力和流动度之间的关系开展了较文献中现有结果更为严格的理论分析,获得了一组新的公式,完善了Roussel等人的理论工作。在此基础上,定量计算了表面张力和浸润性、截锥圆模容积、浆体密度对屈服应力和流动度之间关系的影响。

 Abstract: The mini-conical slump flow test, also known as the fluidity test, is one of the most common methods for quality control in characterizing cement pastes and grouts and for a quick evaluation of the performance of chemical admixtures. There have already been many research efforts to relate the final spread of the slumped paste to its yield stress, with maybe the most convincing one being the theoretical work of Roussel et al., where analytical expressions were derived based on hydrostatic considerations, with the influences of surface tension and wettability accounted for by a fitting parameter. Here, a more rigorous theoretical treatment of the effects of surface tension and wettability is repored. A set of equations for the relation between final spread and yield stress, with no physical ambiguous fitting parameters, are derived. The results are compared with those of Roussel et al., and the influences of surface tension and wettability, sample volume, and paste density are studied within this theoretical framework.

关键词:
流动度试验;水泥净浆;屈服应力;流体静力学;表面张力;浸润性;浆体密度
扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)从流体静力学的角度对水泥净浆流动度试验开展理论研究,暂时主要关注流体屈服应力和流动度之间的关系。在考虑流体表面张力和表面浸润性的情况下,对这一问题进行了较文献中现有结果更为严格的理论分析,获得了一组新的公式,对Roussel等人的理论作了进一步完善,不再限制于通过拟合试验数据获得未知参数。

(2)引入了反映了屈服应力与表面张力(以及表面浸润性)两种导致浆体停滞的机制之间的相对贡献大小的无量纲参数,Roussel数。若Roussel数远大于1,则流动度主要由流体的屈服应力决定;反之,若Roussel数远小于1,流动度主要由表面张力和表面浸润性决定。

(3)在理论分析的基础上,对表面张力和浸润性、截锥圆模容积、浆体密度对屈服应力和流动度之间关系的影响进行了定量考察,计算结果为不同截锥圆模容积下所测得的流动度数值之间的转换提供了理论依据。此外,当流动度较大或者浆体的屈服应力较小时,要留意流体表面张力及其和表面的浸润性和浆体密度对流动度的影响,而不单是将流动度归因于流体的屈服应力。

(4)提出通过增加浆体和表面的浸润性(降低接触角)和增加截锥圆模的容积从而提高流动度试验对浆体屈服应力表征的分辨率的观点。
 
(5)本文的理论分析没有考虑具体的流动过程,也忽略了惯性力的影响,不涉及操作者的上提速度、浆体黏度和流动时间等变量,在后续的工作中将尝试对流动过程和惯性项的影响开展研究。
[1] GB/T 8077—2012 混凝土外加剂均质性试验方法[S].北京:中国标准出版社,2012.
[2] Wedding P A, Kantro D L. Influence of Water-Reducing Admixtures on Properties of Cement Paste—A Miniature Slump Test[J].Cement Concrete & Aggregates,1980,2(2):95-102.
[3] Kantro D.L,卞葆芝.减水剂对水泥浆性能的影响微型坍落度试验[J].建材发展导向,1983(3):46-53.
[4] 张云理.减水剂塑化功能快速检验——水泥浆流动度试验方法的研究[J].混凝土,1985(4):32-37.
[5] 张师恩,张云理,卞葆芝.论水泥浆流动度试验方法及应用[J] 混凝土,2009(1):100-102.
[6] 马国生,王建敏,朱永健,等.水泥净浆流动度在外加剂质量检验中的作用[J].混凝土,2010(12):84-86.
[7] 张大康.水泥净浆流动度与混凝土流变性能相关性试验[J].水泥,2006(1):12-15.
[8] Pashias N,Boger D V,Summers J, et al.A fifty cent rheometer for yield stress measurement[J].Journal of Rheology,1996,40(6):1179-1189.
[9] Bouvet A,Ghorbel E Bennacer R.The mini-conical slump flow test: Analysis and numerical study[J].Cement & Concrete Research,2010,40(10):1517-1523.
[10] Gao J, Fourie A.Spread is better: An investigation of the mini-slump test[J].Minerals Engineering,2015,71:120-132.
[11] Roussel N,Stefani C,Leroy R.From mini-cone test to Abrams cone test: measurement of cement-based materials yield stress using slump tests[J].Cement & Concrete Research,2005, 35(5):817-822.
[12] Bird R B,Stewart W E,Lightfoot E N.Transport Phenomena [M].2nd Edition. New York:John Wiley & Sons,2002:48-52.
[13] 刘豫,史才军,焦登武,等.新拌水泥基材料的流变特性、模型和测试研究进展[J].硅酸盐学报,2017,45(5):708-716.
[14] Jiao D,Shi C,Yuan Q,et al.Effect of constituents on rheological properties of fresh concrete-A review[J].Cement & Concrete Composites,2017,83:146-159.
[15] Roussel N.Understanding the Rheology of Concrete[M]. Woodhead Publishing,2011.
[16] 王衍伟,冉千平,刘加平.赫巴流体在圆管内层流流动理论及混凝土泵送应用实例[J].混凝土与水泥制品,2018(1):22-26.
[17] 刘建忠,孙伟,张倩倩,等.低水胶比水泥基复合材料的流变特性[J].混凝土与水泥制品,2014(1):1-4.
[18] Tanigawa Y,Mori H.Analytical Study on Deformation of Fresh Concrete[J].Journal of Engineering Mechanics,1989,115(3):493-508.
[19] Roussel N,Coussot P.“Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow[J].Journal of Rheology,2005,49(3):705-718.
[20] Baudez J C,Chabot F,Coussot P.Rheological interpretation of the slump test[J].Applied Rheology,2002,12(3):133-141.
[21] Coussot P,Proust S,Ancey C.Rheological interpretation of deposits of yield stress fluids[J].Journal of Non-Newtonian Fluid Mechanics,1996,66(1):55-70.
[22] Flatt R J,Larosa D,Roussel N.Linking yield stress measurements: Spread test versus Viskomat[J].Cement & Concrete Research,2006,36(1):99-109.
[23] De Gennes P G,Brochard-Wyart F,Quéré D.Capillarity and Wetting Phenomena:Drops,Bubbles,Pearls,Waves[M].Springer, 2004.
[24] Lange A,Plank J.Contribution of non-adsorbing polymers to cement dispersion[J].Cement & Concrete Research,2016,79:131-136.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州