苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
混凝土界面过渡区(ITZ)微观特性研究进展
2018年第2期
混凝土;界面过渡区;微观结构;表征参数;孔隙率
Concrete; Interface transition zone; Microstructure; Characterization parameters; Porosity
2018年第2期
1000-4637(2018)02-07-06
1000-4637(2018)02-07-06
国家自然科学基金项目(51708349、11672185);温职院面向温州510产业新技术应用项目(WZY510005);上海市大学生创新创业计划(SH2016112)。
欧阳利军1,安子文1,杨伟涛1,丁 斌2,镇 斌1
1.上海理工大学 环境与建筑学院,200093;2. 温州职业技术学院 建筑工程系,325035

欧阳利军1,安子文1,杨伟涛1,丁 斌2,镇 斌1

界面过渡区(Interface Transition Zone, 简称ITZ)是指复合材料中不同材料的交界区域,该区域通常与各单一材料性质存在差异,是复合材料性能的研究重点。水泥基复合材料界面过渡区的概念虽已提出近百年,但关于界面过渡区的研究曾一度停滞,直至20世纪70年代后Farren和 Grandet等几位学者的研究成果公布,关于水泥基复合材料界面过渡区的研究才相继开展[1]。目前,研究人员对水泥浆体与不同骨料之间的界面过渡区进行了研究。常规试验研究主要集中在ITZ的形成机制(物化过程)和ITZ的微观结构(厚度、硬度和孔隙率等)等方面。

  现代土木工程对混凝土材料综合性能的要求越来越高,尤其是在混凝土抗渗、抗腐蚀等耐久性方面。混凝土的耐久性很大程度上受混凝土材料内部结构特性的影响,ITZ因其独特的微观结构特性被学者认为是混凝土材料内部结构的薄弱环节[2-6],随着研究人员对ITZ研究的不断深入,ITZ作为混凝土材料中独立的一相,已经被多数学者认可。同时由于ITZ厚度非常小(微米级),其微观特性方面的常规试验研究方法和手段较为单一,加之不同外界因素的影响,各学者的研究结果较为离散。在众多试验结果差异较大的情况下想要较全面掌握ITZ的特性,尤其是关于ITZ的形成机制、ITZ微观结构特性以及影响ITZ微观性能的因素等,就需要更多的样本数量。因此,现有混凝土ITZ研究亟需更完善的研究手段和更丰富的试验数据。

  如能获得混凝土ITZ微观结构特性与混凝土宏观力学性能之间的内在联系,将会较大程度地促进混凝土材料优化方法研究。本文对混凝土ITZ的主要形成机制、微观结构特性、影响界面过渡区性能的主要因素等方面的研究成果进行了总结,指出需深入研究的方向。

浏览量:
1000
界面过渡区(Interface Transition Zone, 简称ITZ)是指复合材料中不同材料的交界区域,该区域通常与各单一材料性质存在差异,是复合材料性能的研究重点。水泥基复合材料界面过渡区的概念虽已提出近百年,但关于界面过渡区的研究曾一度停滞,直至20世纪70年代后Farren和 Grandet等几位学者的研究成果公布,关于水泥基复合材料界面过渡区的研究才相继开展[1]。目前,研究人员对水泥浆体与不同骨料之间的界面过渡区进行了研究。常规试验研究主要集中在ITZ的形成机制(物化过程)和ITZ的微观结构(厚度、硬度和孔隙率等)等方面。   现代土木工程对混凝土材料综合性能的要求越来越高,尤其是在混凝土抗渗、抗腐蚀等耐久性方面。混凝土的耐久性很大程度上受混凝土材料内部结构特性的影响,ITZ因其独特的微观结构特性被学者认为是混凝土材料内部结构的薄弱环节[2-6],随着研究人员对ITZ研究的不断深入,ITZ作为混凝土材料中独立的一相,已经被多数学者认可。同时由于ITZ厚度非常小(微米级),其微观特性方面的常规试验研究方法和手段较为单一,加之不同外界因素的影响,各学者的研究结果较为离散。在众多试验结果差异较大的情况下想要较全面掌握ITZ的特性,尤其是关于ITZ的形成机制、ITZ微观结构特性以及影响ITZ微观性能的因素等,就需要更多的样本数量。因此,现有混凝土ITZ研究亟需更完善的研究手段和更丰富的试验数据。   如能获得混凝土ITZ微观结构特性与混凝土宏观力学性能之间的内在联系,将会较大程度地促进混凝土材料优化方法研究。本文对混凝土ITZ的主要形成机制、微观结构特性、影响界面过渡区性能的主要因素等方面的研究成果进行了总结,指出需深入研究的方向。
英文名 :
刊期 : 2018年第2期
关键词 : 混凝土;界面过渡区;微观结构;表征参数;孔隙率
Key words : Concrete; Interface transition zone; Microstructure; Characterization parameters; Porosity
刊期 : 2018年第2期
DOI : 1000-4637(2018)02-07-06
文章编号 : 1000-4637(2018)02-07-06
基金项目 : 国家自然科学基金项目(51708349、11672185);温职院面向温州510产业新技术应用项目(WZY510005);上海市大学生创新创业计划(SH2016112)。
作者 : 欧阳利军1,安子文1,杨伟涛1,丁 斌2,镇 斌1
单位 : 1.上海理工大学 环境与建筑学院,200093;2. 温州职业技术学院 建筑工程系,325035

欧阳利军1,安子文1,杨伟涛1,丁 斌2,镇 斌1

界面过渡区(Interface Transition Zone, 简称ITZ)是指复合材料中不同材料的交界区域,该区域通常与各单一材料性质存在差异,是复合材料性能的研究重点。水泥基复合材料界面过渡区的概念虽已提出近百年,但关于界面过渡区的研究曾一度停滞,直至20世纪70年代后Farren和 Grandet等几位学者的研究成果公布,关于水泥基复合材料界面过渡区的研究才相继开展[1]。目前,研究人员对水泥浆体与不同骨料之间的界面过渡区进行了研究。常规试验研究主要集中在ITZ的形成机制(物化过程)和ITZ的微观结构(厚度、硬度和孔隙率等)等方面。

  现代土木工程对混凝土材料综合性能的要求越来越高,尤其是在混凝土抗渗、抗腐蚀等耐久性方面。混凝土的耐久性很大程度上受混凝土材料内部结构特性的影响,ITZ因其独特的微观结构特性被学者认为是混凝土材料内部结构的薄弱环节[2-6],随着研究人员对ITZ研究的不断深入,ITZ作为混凝土材料中独立的一相,已经被多数学者认可。同时由于ITZ厚度非常小(微米级),其微观特性方面的常规试验研究方法和手段较为单一,加之不同外界因素的影响,各学者的研究结果较为离散。在众多试验结果差异较大的情况下想要较全面掌握ITZ的特性,尤其是关于ITZ的形成机制、ITZ微观结构特性以及影响ITZ微观性能的因素等,就需要更多的样本数量。因此,现有混凝土ITZ研究亟需更完善的研究手段和更丰富的试验数据。

  如能获得混凝土ITZ微观结构特性与混凝土宏观力学性能之间的内在联系,将会较大程度地促进混凝土材料优化方法研究。本文对混凝土ITZ的主要形成机制、微观结构特性、影响界面过渡区性能的主要因素等方面的研究成果进行了总结,指出需深入研究的方向。

摘要
参数
结论
参考文献
引用本文

 摘   要:总结了混凝土界面过渡区的主要形成机制、微观特性和影响界面过渡区性能的主要因素等方面的研究成果,归纳了界面过渡区厚度、微观硬度、孔隙率和孔隙分布状态、水泥水化产物、氢氧化钙晶向指数、未水化水泥含量和微裂缝密度等参数对混凝土界面过渡区特性的影响,指出了当前混凝土界面过渡区微观特性方面需深入研究的方向。

   Abstract:The main formation mechanism and microstructure characteristics of the interfacial transition zone in normal temperature concrete which studied both at home and abroad are reviewed. The effects of microstructure thickness, micro hardness, porosity, distribution of pores, cement hydration products, orientation index of calcium hydroxide, unhydrated cement content and micro-crack density on the properties of interfacial transition zone of concrete are concluded. Finally, the future research directions of the interfacial transition zone in concrete are pointed out.

关键词:
混凝土;界面过渡区;微观结构;表征参数;孔隙率
扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加
(1)对水泥基复合材料ITZ特性的深入研究需系统了解ITZ厚度、ITZ微观硬度、ITZ孔隙率及孔隙分布状态、水泥水化产物、CH晶向指数、未水化水泥含量、ITZ微裂缝密度和离子迁移系数等关键指标参数。
(2)超细外掺矿物产生的物理和化学作用可起到改善常温下混凝土ITZ微观特性的作用,提高混凝土的抗渗、抗有害离子侵蚀等耐久性能以及混凝土宏观力学性能。但掺入各类外掺料的混凝土在高温作用后其ITZ微观特性如何变化还需要进行深入研究。
(3)温度损伤前后,ITZ内微裂缝扩展情况可通过裂缝密度指标来衡量。高温后混凝土材料ITZ微观性能的变化与混凝土随机损伤过程之间的联系以及高温后混凝土ITZ微观特性的变化对混凝土中离子传输性能的影响有待进行定量分析。
[1] 薛君,唐明述,楼宗汉.第七届国际水泥化学会议论文集[C]. 北京:中国建筑工业出版社,1985.
[2] BENTZ D P,STUTZMAN P E,GARBOCZI E J.Experimental and simulation studies of the interfacial zone in concrete [J]. Cement and Concrete Research,1992,22(5):891-902.
[3] WONG H S, BUENFELD N R. Euclidean distance mapping for computing microstructural gradients at interfaces in composite materials [J].Cement and Concrete Research,2006,36(6):1091-1097.
[4] AYHAN M. Effect of basic pumice on morphologic properties of interfacial transition zone in load-bearing lightweight/semi-lightweight concretes [J]. Construction and Building Materials,2011,25(5):2507-2518.
[5] KONG L J,HOU L R,WANG Y H,et al.Investigation of the interfacial transition zone between aggregate-cement paste by AC impedance spectroscopy [J].Journal of Wuhan University of Technology (Materials Science),2016,31(4):865-871.
[6] Xie Y T,Corr D J, Jin F,et al.Experimental study of the interfacial transition zone (ITZ) of model rock-filled concrete (RFC)[J]. Cement and Concrete Composites, 2015,55(55):223-231.
[7] 施惠生,居正慧,郭晓潞,等.ITZ形成机制及其对混凝土力学性能与传输性能的影响[J].建材技术与应用,2014(6):11-18.
[8] 石妍,杨华全,陈霞,等.骨料种类、骨料粒径大小对混凝土孔结构及微观界面的影响[J].建筑材料学报,2015,18(1):133-138.
[9] KENNY A,KATZ A.Characterization of the interfacial transition zone around steel rebar by means of the mean shift method [J].Materials and Structures,2012,45(5):639-652.
[10] 徐礼华,余红芸,池寅,等.钢纤维-水泥基界面过渡区纳米力学性能[J].硅酸盐学报,2016,44(8):1134-1146.
[11] LEEMANN A, LOSER R, Münch B. Influence of cement type on ITZ porosity and chloride resistance of self-compacting concrete[J].Cement and Concrete Composites,2010,32(2):116-120.
[12] Hussin A, Poole C. Petrography evidence of the interfacial transition zone (ITZ) in the normal strength concrete containing granitic and limestone aggregates [J].Construction and Building Materials,2011,25(5):2298-2303.
[13] Cwirzen A, Penttala V. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes[J]. Cement and Concrete Research,2005, 35(4):671-679.
[14] 何小芳,缪昌文,张云升,等.水泥基复合材料界面过渡区结构及其性能的分析方法综述[J].混凝土,2009(10):19-23.
[15] Breugel K V. Simulation of hydration and formation of structure in hardening cement-based materials[J].Journal ofBiological Chemistry,1991(7):516-519.
[16] CHEN Z Y,Odler I.The interfacial zone between marble and tricalcium silicate paste[J].Cement and Concrete Research, 1987,17(5):784-792.
[17] Elsharief A, Cohen M D, Olek J. Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone[J].Cement and Concrete Research, 2003,33(11):1837-1849.
[18] CALISKAN S.Aggregate/mortar interface: influence of silica fume at the micro-and macro-level [J].Cement and Concrete Composites,2003,25(4-5):557-564.
[19] 陈惠苏,孙伟,赵庆新,等.截面分析法对任意凸形粒子周围界面过渡区厚度过高估计的解析解[J].复合材料学报,2006, 23(4):155-163.
[20] SCRIVENER K L.Characterization of the ITZ and its quantification by test methods [C].Engineering and Transport Properties of the Interfacial Transition Zone in Cementitious Composites. London: RILEM Publications S.A.R.L,1996:3-15.
[21] Erdem S,Dawson A R,Thom N H.Influence of the micro- and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates[J].Cement and Concrete Research,2012,42(2):447-458.
[22] Wu K,Shi H S,Xu L L,et al.Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties[J].Cement and Concrete Research,2016,79:243-256.
[23] Liao K Y,Chang P K,Peng Y N,et al.A study on characteristics of interfacial transition zone in concrete [J]. Cement and Concrete Research,2004,34(6):977-989.
[24] 李杰,任晓丹.混凝土随机损伤力学研究进展[J].建筑结构学报,2014,35(4):20-29.
[25] 贾彬,杨帆,陶俊林,等.混凝土高温力学特性与本构方程[J].混凝土,2014(2):25-28.
[26] Buck A D, Dolch W L. Investigation of a reaction involving nondolomitic limestone aggregate in concrete [M].American Concrete Institute,1966.
[27] Barnes B D,Diamond S,Dolch W L.The contact zone between Portland cement paste and glass “aggregate” surfaces[J].Cement and Concrete Research,1978,8(2):233-243.
[28] Gradet J,Ollivier J.Nouvelle méthode d'étude des interfaces ciment-granulats [M]. Paris: 7e Congrès international sur la chimie du ciment,1980.
[29] Grandet J,Ollivier J P.Etude de la formation du monocarboaluminate de calcium hydrate au contact d'un granulat calcaire dans une pate de ciment Portland [J].Cement and Concrete Research,1980,10(6):759-770. 
[30] 王嘉.水泥石-集料界面过渡层中CH晶体取向机理的探讨[J].武汉理工大学学报,1986(3):42-47.
[31] Akaolu T,Tokyay M,elik T.Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete[J].Cement and Concrete Research,2005, 35(2):358-363.
[32] Ollivier J P,Maso J C,Bourdette B.Interfacial transition zone in concrete[J].Advanced Cement Based Materials,1996,2(1):30-38.
[33] Leemann A,Münch B,Gasser P,et al.Influence of compaction on the interfacial transition zone and the permeability of concrete[J].Cement and Concrete Research, 2006,36(8):1425-1433.
[34] 吴凯,施惠生,徐玲琳,等.矿物掺合料调控界面过渡区微结构对混凝土力学性能的影响[J].硅酸盐学报,2017,45(5):623-630.
[35] Scrivener K L, Crumbie A K, Laugesen P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete [J].Interface Science,2004,12(4):411-421.
[36] Nadeem A,Memon S A,Lo T Y.Qualitative and quantitative analysis and identification of flaws in the microstructure of fly ash and metakaolin blended high performance concrete after exposure to elevated temperatures[J].Construction and Building Materials,2013,38(2):731-741.
[37] Delagrave A,Marchand J,Pigeon M.Influence of microstructure on the tritiated water diffusivity of mortars[J]. Advanced Cement Based Materials,1998,7(2):60-65.
[38] Rangaraju P R,Olek J,Diamond S.An investigation into the influence of inter-aggregate spacing and the extent of the ITZ on properties of Portland cement concretes[J].Cement and Concrete Research,2010,40(11):1601-1608.
[39] Hu J,Stroeven P.Properties of the interfacial transition zone in model concrete[J].Interface Science,2004,12(4):389-397.
[40] Paulon V A, Molin D D, Monteiro P J M. Statistical analysis of the effect of mineral admixtures on the strength of the interfacial transition zone [J].Interface Science,2004,12(4): 399-410.
[41] Mu oz J F,Yuan Y,Youtcheff J,et al.Mixtures of silicon and aluminum oxides to optimize the performance of nanoporous thin films in concrete [J].Cement and Concrete Composites, 2013,48(2):140-149.  

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州