苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
功能型第三单体对聚羧酸减水剂分散及分散保持性能的影响
Influence of the Third Functional Monomer of Polycarboxylic Superplasticizer on Dispersion and Dispersability Retention of Cem
2015年第10期
聚羧酸(PCE);功能型第三单体;Zeta电位;分散;吸附
Polycarboxylate (PCE); Third functional monomer; Zeta potential; Dispersion; Adsorption
2015年第10期
1000-4637(2015)10-01-05
国家自然科学基金(51408272,51272100);中国铁路总公司科技研究开发计划重大课题(2014G001-C)资助项目
王秀梅,丁 娅,张 霞,杨 勇,徐 文
高性能土木工程材料国家重点实验室,江苏省建筑科学研究院有限公司, 江苏苏博特新材料股份有限公司,南京 210008

王秀梅,丁 娅,张 霞,杨 勇,徐 文

浏览量:
1000
摘 要:通过自由基热聚合的方法合成了相同羧基密度、相同侧链长度和密度、不同功能型第三单体的一系列PCE (Polycarboxylate, PCE),利用GPC、FT-IR等手段对PCE结构表征,通过分析其对水泥浆体的Zeta电位、分散、吸附等的影响规律,研究了不同功能型第三单体对PCE宏观性能的影响规律。结果表明,功能型第三单体为丙烯酰胺的PCE吸附量最大,初始净浆流动度最大,流动性保持能力较丙烯酸-2-羟乙酯(HEA)或者丙烯酸羟丙酯(HPA)要差。功能型第三单体为HEA或者HPA的PCE在水泥表面的吸附量相当,但由于HEA较HPA生成的PCE吸附层厚度更厚,因而第三单体为HEA的PCE初始净浆流动度较HPA要大。 Abstract: Comb-like polycarboxylate with the same density of carboxylic acid, same side chain length and side chain density, but different third functional monomer was synthesized by the method of radical thermal polymerization. The structure of PCE was characterized by GPC and FT-IR. The influences of third functional monomer on the macroscopic properties, for instance, the Zeta potential, dispersion and adsorption of the fresh cement paste were investigated systematically. The results indicate that the adsorption amount of PCE with AM as the third functional monomer is the maximum, thereby the best workability of cement paste. However, the fluidity retention capacity is poor than HEA or HPA. The adsorption amount of PCE with HEA or HPA as the third functional monomer is almost the same. Furthermore, the adsorbed layer thickness of PCE with HEA is thicker than HPA, thereby the initial fluidity is larger than HPA.
英文名 : Influence of the Third Functional Monomer of Polycarboxylic Superplasticizer on Dispersion and Dispersability Retention of Cem
刊期 : 2015年第10期
关键词 : 聚羧酸(PCE);功能型第三单体;Zeta电位;分散;吸附
Key words : Polycarboxylate (PCE); Third functional monomer; Zeta potential; Dispersion; Adsorption
刊期 : 2015年第10期
DOI :
文章编号 : 1000-4637(2015)10-01-05
基金项目 : 国家自然科学基金(51408272,51272100);中国铁路总公司科技研究开发计划重大课题(2014G001-C)资助项目
作者 : 王秀梅,丁 娅,张 霞,杨 勇,徐 文
单位 : 高性能土木工程材料国家重点实验室,江苏省建筑科学研究院有限公司, 江苏苏博特新材料股份有限公司,南京 210008

王秀梅,丁 娅,张 霞,杨 勇,徐 文

摘要
参数
结论
参考文献
引用本文

摘   要:通过自由基热聚合的方法合成了相同羧基密度、相同侧链长度和密度、不同功能型第三单体的一系列PCE (Polycarboxylate, PCE),利用GPC、FT-IR等手段对PCE结构表征,通过分析其对水泥浆体的Zeta电位、分散、吸附等的影响规律,研究了不同功能型第三单体对PCE宏观性能的影响规律。结果表明,功能型第三单体为丙烯酰胺的PCE吸附量最大,初始净浆流动度最大,流动性保持能力较丙烯酸-2-羟乙酯(HEA)或者丙烯酸羟丙酯(HPA)要差。功能型第三单体为HEA或者HPA的PCE在水泥表面的吸附量相当,但由于HEA较HPA生成的PCE吸附层厚度更厚,因而第三单体为HEA的PCE初始净浆流动度较HPA要大。

Abstract: Comb-like polycarboxylate with the same density of carboxylic acid, same side chain length and side chain density, but different third functional monomer was synthesized by the method of radical thermal polymerization. The structure of PCE was characterized by GPC and FT-IR. The influences of third functional monomer on the macroscopic properties, for instance, the Zeta potential, dispersion and adsorption of the fresh cement paste were investigated systematically. The results indicate that the adsorption amount of PCE with AM as the third functional monomer is the maximum, thereby the best workability of cement paste. However, the fluidity retention capacity is poor than HEA or HPA. The adsorption amount of PCE with HEA or HPA as the third functional monomer is almost the same. Furthermore, the adsorbed layer thickness of PCE with HEA is thicker than HPA, thereby the initial fluidity is larger than HPA.

关键词:
聚羧酸(PCE);功能型第三单体;Zeta电位;分散;吸附
扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加
通过自由基热聚合的方法制备了一系列具有相同羧基密度、相同侧链长度、相同侧链密度、通过引入不同功能型第三单体得到不同结构的PCE,利用净浆流动度、吸附、Zeta电位等表征手段,从静电斥力、空间位阻、吸附的角度,系统研究了功能型第三单体对PCE宏观性能的影响规律。净浆流动度显示:功能型第三单体为AM的PCE初始净浆流动度最佳,其次为HEA的PCE,而功能型第三单体为HPA或AMPS的初始净浆流动度相当。功能型第三单体为HEA或HPA的PCE分散保持能力相当,均较功能型第三单体为AM的PCE要强,其中功能型第三单体为AMPS的PCE分散保持能力最差。吸附数据表明:功能型第三单体为AM的PCE在3min时吸附量最大,因而初始净浆流动度最大,但由于酰胺键断裂较酯键困难,因此,流动性保持能力较HEA或者HPA要差。功能型第三单体为HEA或者HPA的PCE在3min时吸附量相当。Zeta电位表明:PCE吸附在水泥颗粒表面导致Zeta电位变得更负,功能型第三单体为HEA较HPA的PCE吸附层厚度更厚。本研究可为PCE的设计、开发、应用提供一定的指导性建议。
 
[1] Ramachandran V. S.. Concrete Admixtures Handbook[M]. Noyes Publications, New Jersey, U.S.A., 1995:1153.
[2] Sakai E.. New trends in the development of chemical admixtures in Japan[J]. Journal of Advanced Concrete Technology, 2006, 4(2):211-223.
[3] Xuan D. X., Houben L. J. M., Molenaar A. A. A.. Mechanical properties of cement-treated aggregate material-A review[J]. Materials and Design, 2012, 33: 496-502.
[4] Shunsuke H., Kazuo Y.. Rheology and early age properties of cement systems[J]. Cement and Concrete Research, 2008, 38: 175-195.
[5] Uchikawa H., Hanehara S., Sawaki D.. The role of steric repulsive force in thedispersion of cement particles in fresh paste prepared with organic admixture[J].Cement and Concrete Research, 1997, 27(1):37-50.
[6] Kauppi A., Andersson K. M., Bergstrom L.. Probing the effect of superplasticizeradsorption on the surface forces using the colloidal probe AFM technique[J].Cement and Concrete Research, 2005, 5(1):133-140.
[7] Yamada K., Takahashi T., Hanehara S.. Effects of chemical structure on the properties of polycarboxylate-type superplasticizer[J]. Cement and Concrete Research, 2000, 30: 197-207.
[8] Li C. Z., Feng N. Q., Li Y. D.. Effects of polyethlene oxide chains on the performance of polycarboxylate-type water-reducers[J].Cement and Concrete Research, 2005, 35: 867-873.
[9] Ran Q. P., Somasundaran P., Miao C. W.. Adsorption mechanism of comb polymer dispersants at the cement/water interface[J]. Journal of Dispersion Science and Technology, 2010, 31: 790-798.
[10] Feleko lu B., Sarkahya H.. Effect of chemical structure of polycarboxylate-based superplasticizers on workability retention of self-compacting concrete[J].Construction and Building Materials, 2008, 22: 1972-1980.
[11] Liu X., Wang Z., Zhu J.. Synthesis, characterization and performance of a polycarboxylate superplasticizer with amide structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 448: 119-129.
[12] Lange A., Hirata T., Plank J.. Influence of the HLB value of polycarboxylate superplasticizers on the flow behavior of mortar and concrete[J].Cement and Concrete Research, 2014, 60: 45-50.
[13] Elbieta J. R.. The effect of superplasticizers’ chemical structure on their efficiency in cement pastes[J]. Construction and Building Materials, 2013, 38: 1204-1210.
[14] Yoshioka K., Sakai E., Daimon M.. Role of steric hindrance in the performance of superplasticizers for concrete[J].Journal of the American Ceramic Society, 1997, 80: 2667-2671.
[15] Zingg A., Winnefeld F., Holzer L.. Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases[J]. Journal of Colloid Interface Science, 2008, 323: 301-312.
[16] Schmidt W., Brouwers H. J. H., Kühne H. C.. Influences of superplasticizer modification and mixture composition on the performance of self-compacting concrete at varied ambient temperatures[J]. Cement and Concrete Composites, 2014, 49: 111-126.
[17] Kissa E.. Dispersions: characterization, testing, and measurement[M]. in:M.Dekker(Eds.).Surfactant science, New York, 1999. 
[18] Palacios M., Puertas F., Bowen P.. Effect of PCs superplasticizers on the rheological properties and hydration process of slag-blended cement pastes[J]. Journal of Materials Science, 2009, 44: 2714-2723.
[19] 乔敏,余寅辉,冉千平,等.超长侧链型聚羧酸梳形共聚物对水泥早期水化的影响[J].功能材料,2012, 43: 1561-1568.
[20] Ran Q. P.,  Miao C. W.,  Liu J. P., et al.Performance and mechanism of a multi-Functional superplasticizer for concrete[J].Materterial Transaction, 2006, 47:1599-1604.
[21] Ran Q. P., Somasundaran P., Miao C. W., et al. Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions[J].Journal of Colloid and Interface Science, 2009, 336:624-633.
[22] Collepardi M.. Admixtures used to enhance placing characteristics of concrete[J].Cement and Concrete Composites, 1998, 20: 103-112.
[23] Kirby G. H., Lewis J. A.. Comb polymer architecture effects on the rheological property evolution of concentrated cement suspensions[J].Journal of the American Ceramic Society, 2004, 87(9): 1643-1652.
[24] Plank J., Zhimin D., Keller H.. Fundamental mechanisms for polycarboxylate intercalation into C3A hydrate phases and the role of sulfate present in cement[J].Cement and Concrete Research, 2010, 40(1): 45-57.
[25] Giraudeau C., D'Espinose De Lacaillerie J. B., Souguir Z.. Surface and intercalation chemistry of polycarboxylate copolymers in cementitious systems[J].Journal of the American Ceramic Society, 2009, 92(11): 2471-2488.
[26] Lothenbach B., Winnefeld F.. Thermodynamic modelling of the hydration of Portland cement[J].Cement and Concrete Research, 2006, 36:209-226.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州