苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
细观层次混凝土动态性能的影响因素研究综述
Investigation Review of Affecting Factors for Concrete Dynamic Performance in Meso-scale
2015年第12期
界面过渡区(ITZ);力学性能;试验方法;数值模拟;综述
Interfacial transition zone (ITZ); Mechanical properties; Experimental methods; Numerical simulation; Review
2015年第12期
1000-4637(2015)12-19-06
国家自然科学基金资助(51308480)
张 书,卢玉斌
西南科技大学制造过程测试技术教育部重点实验室,绵阳 621010

张 书,卢玉斌

浏览量:
1000
摘 要:混凝土是三相复合材料,其宏观力学特性与界面过渡区(ITZ)有关。本文总结了ITZ 力学性能的试验与数值模拟研究现状,并就ITZ 影响混凝土宏观动态力学性能的参数进行了归纳。结果表明,由于缺乏ITZ动态力学性能的试验数据,目前基于细观数值模拟技术研究混凝土试样动态力学性能的成果均是在一定假设条件下开展的。然而,这些假设条件的可靠性有待相应试验数据的验证。经过对ITZ的几何和力学影响因素的总结,指出针对ITZ影响混凝土宏观动态力学性能问题中尚待深入研究的内容。 Abstract: The concrete is a kind of three-phase composite, whose macro-mechanical properties correlate with interfacial transition zone (ITZ). In this paper, the research status of experimental study and numerical simulation on the ITZ mechanical properties are summarized, and the ITZ influential parameters to the macro-mechanical properties of concrete are also concluded. It is found that dynamic mechanical results obtained from meso-scale numerical simulation are based on certain assumptions. However, the reliability of these assumptions needs to be further validated by corresponding experimental data. Through summarizing the geometrical and mechanical influential parameters of ITZ, issues about how ITZ influences the macro-dynamic mechanical performances of concrete which require further study are pointed out.
英文名 : Investigation Review of Affecting Factors for Concrete Dynamic Performance in Meso-scale
刊期 : 2015年第12期
关键词 : 界面过渡区(ITZ);力学性能;试验方法;数值模拟;综述
Key words : Interfacial transition zone (ITZ); Mechanical properties; Experimental methods; Numerical simulation; Review
刊期 : 2015年第12期
DOI :
文章编号 : 1000-4637(2015)12-19-06
基金项目 : 国家自然科学基金资助(51308480)
作者 : 张 书,卢玉斌
单位 : 西南科技大学制造过程测试技术教育部重点实验室,绵阳 621010

张 书,卢玉斌

摘要
参数
结论
参考文献
引用本文

摘   要:混凝土是三相复合材料,其宏观力学特性与界面过渡区(ITZ)有关。本文总结了ITZ 力学性能的试验与数值模拟研究现状,并就ITZ 影响混凝土宏观动态力学性能的参数进行了归纳。结果表明,由于缺乏ITZ动态力学性能的试验数据,目前基于细观数值模拟技术研究混凝土试样动态力学性能的成果均是在一定假设条件下开展的。然而,这些假设条件的可靠性有待相应试验数据的验证。经过对ITZ的几何和力学影响因素的总结,指出针对ITZ影响混凝土宏观动态力学性能问题中尚待深入研究的内容。

 Abstract: The concrete is a kind of three-phase composite, whose macro-mechanical properties correlate with interfacial transition zone (ITZ). In this paper, the research status of experimental study and numerical simulation on the ITZ mechanical properties are summarized, and the ITZ influential parameters to the macro-mechanical properties of concrete are also concluded. It is found that dynamic mechanical results obtained from meso-scale numerical simulation are based on certain assumptions. However, the reliability of these assumptions needs to be further validated by corresponding experimental data. Through summarizing the geometrical and mechanical influential parameters of ITZ, issues about how ITZ influences the macro-dynamic mechanical performances of concrete which require further study are pointed out.

关键词:
界面过渡区(ITZ);力学性能;试验方法;数值模拟;综述
扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加
ITZ的力学性能参数,如ITZ的杨氏模量、静态强度和DIF等,ITZ的几何厚度以及骨料的尺寸等参数均会影响混凝土的力学性能。而ITZ的杨氏模量、静态抗拉强度等参量,可通过现有的试验技术进行测量。骨料的不同尺寸可在建立混凝土细观数值模型时进行考虑。此外,ITZ的密度、泊松比等参数在动态加载下也可能会影响混凝土的力学性能,甚至ITZ材料选择不同的本构模型也会对混凝土力学性能的数值模拟结果造成影响。因此,针对上述影响因素进行动态加载下的定性分析,对深入研究ITZ的动力特性及探究ITZ对混凝土力学性能的影响具有重要意义。
此外,针对含有单骨料的ITZ试样进行分析,能够直观体现ITZ各参数对混凝土宏观力学性能的影响[19,27]。而对于单骨料的ITZ试样而言,不同粒径的骨料也就对应不同直径的试样。基于此,对含有单骨料的ITZ试样模型在动态加载下还需开展深入的有限元参量分析,对ITZ与基体间的相互作用进行针对性的研究,从而探究混凝土率效应的细观物理机制。
[1] Nilsen A U, Monteiro P J M. Concrete: A three phase material[J]. Cement and Concrete Research, 1993, 23(11):147-151.
[2] Barnes B D, Diamond S, Dolch W L. Micromorphology of the interfacial zone around aggregate in Portland cement mortar[J]. Journal of the American Ceramic Society, 1979, 62(1-2):21-24.
[3] Wong H S, Zobel M Z, Buenfeld N R, et al. Influence of the interfacial transition zone and microcracking on the diffusivity,permeability and sorptivity of cement-based material after drying[J]. Magazine of Concrete Research, 2009, 61(8):571-589.
[4] Nadeau J C. Water-cement ratio gradients in mortars and corresponding effective elastic properties[J]. Cement and Concrete Research, 2002, 32(3):481-490.
[5] Kosmatka SH, Kerkhoff B, Panarese WC. Design and control of concrete mixtures (14th ed)[M]. Skokie, Portland Cement Association, 2002.
[6] Prokopski G, Halbiniak J. Interfacial transition zone in cementitious materials[J]. Cement and Concrete Research, 2000, 30(4):579-583.
[7] 王瑶, 周继凯, 沈德建, 等. 混凝土中骨料-浆体界面过渡区的力学性能研究综述[J]. 水利水电科技进展, 2008, 28(2):89-94.
[8] 杜修力, 金浏. 混凝土静态力学性能的细观力学方法述评[J]. 力学进展, 2011(4):411-426.
[9] Lu YB, Li QM. About the dynamic uniaxial tensile strength of concrete-like materials[J]. International Journal of Impact Engineering, 2011, 38(4):171-180.
[10] Li QM, Lu YB, Meng H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: Numerical simulations[J]. International Journal of Impact Engineering, 2009, 36(12):1335-1345.
[11] Wang Z L, Gu X L, Lin F. Experimental study on mechanical performance of interface between mortar and aggregate in concrete[C]. The 12th Biennial ASCE Aerospace Division International Conference, Honolulu, Hawaii, USA, 2010:3529-3526.
[12] 朱亚超, 宋玉普, 王立成. 砂浆-骨料界面拉伸软化性能试验[J]. 建筑科学与工程学报, 2011, 28(1):91-95. 
[13] 董伟, 张利花, 吴智敏. 岩石-混凝土界面拉伸软化本构关系试验研究[J]. 水利学报, 2014, 45(6):712-719.
[14] Xiao J Z, Li W G, Sun Z H, et al. Properties of interfacial zones in recycled aggregate concrete tested by nanoidentation[J]. Cement and Concrete Composites, 2013, 37(1):276-292.
[15] Xiao J Z, Li W G, Corr D, et al. Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete[J]. Cement and Concrete Research, 2013, 52(5):82-99.
[16] Li W G, Xiao J Z, Sun Z H, et al. Interfacial transition zones in recycled aggregate concrete with different mixing approaches[J]. Construction and Building Materials, 2012, 35(5):1045-1055.
[17] Xie Y T, David J C, Feng J, et al. Experimental study of the interfacial transition zone (ITZ) of model rock-filled concrete (RFC)[J]. Cement and Concrete Composites, 2015, 55(1):223-231.
[18] 董芸, 杨华全, 张亮, 等. 骨料界面特性对混凝土力学性能的影响[J]. 建筑材料学报, 2014, 17(4):598-605.
[19] Akcaoglu T, Tokyay M, Celik T. Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression[J]. Cement and Concrete Composites, 2004, 26(6):633-638.
[20] Hong L, Gu X L, Lin F. Influence of aggregate surface roughness on mechanical properties of interface and concrete[J].  Construction and Building Materials, 2014, 65(4):338-349.
[21] Erdem S, Dawson A R, Thom N H. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregate[J]. Cement and Concrete Research, 2012, 42(2):291-305. 
[22] 王瑶, 吴胜兴, 沈德建, 等.砂浆-花岗岩界面动态轴向拉伸力学性能试验研究[J]. 岩土力学, 2012, 33(5):1319-1326, 1332.
[23] 陈兴, 卢玉斌. 砂浆-花岗岩界面过渡区的劈裂拉伸试验研究[J]. 岩石力学与工程学报, 2016, 待发表.
[24] Bazant Z P, Tabbara M R. Random particle models for fracture of aggregate or fiber composites[J]. Journal of Engineering Mechanics, 1990, 116(8):1686-1705.
[25] Song Z H, Lu Y. Mesoscopic analysis of concrete under excessively high strain rate compression and implication on interpretation of test data[J]. International Journal of Impact Engineering, 2012, 46(8):41-55. 
[26] Zhou X Q, Hao H. Mesoscale modeling and analysis of damage and fragmentation of concrete slab under contact detonation[J]. International Journal of Impact Engineering, 2009, 36(12):1315-1326.
[27] Zhou X Q, Hao H. Mesoscale modeling of concrete tensile failure mechanism at high strain rates[J]. Computers and Structures, 2008, 86(21-22):2013-2026.
[28] Du X L, Jin L, Ma G W. Numerical simulation of dynamic tensile-failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66(4):5-17.
[29] Lipez C M, Carol I, Aguado A. Meso-structural study of concrete fracture using interface element. I: numerical model and tensile behavior[J]. Material and Structures, 2008, 41(3):583-599.
[30] Li S G, Li Q B. Method of meshing ITZ structure in 3D meso-level finite element analysis for concrete[J]. Finite Elements in Analysis and Design, 2015, 93(1):96-106.
[31] 于庆磊, 杨天鸿, 唐春安, 等.界面强度对混凝土拉伸断裂影响的数值模[J]. 建筑材料学报, 2009, 12(6):643-649.
[32] 姚勇, 邓勇军, 陈代果, 等. 混凝土细观组成对弹体正侵彻过程影响的数值模拟研究[J]. 应用力学学报, 2015, 32(1):69-75.
[33] Fabrice B, Siham K B. Numerical study of ITZ contribution on mechanical behavior and diffusivity of mortars[J]. Computation Materials Science, 2015, 102(5): 250-257.
[34] 方秦, 张锦华, 还毅, 等. 全级配混凝土三维细观模型的建模方法研究[J]. 工程力学, 2013, 30(1):14-30.
[35] Yao C, Jiang Q H, Shao J F. Numerical simulation of damage and failure in brittle rocks using a modified rigid block spring method[J]. Computer and Geotechnics, 2015, 64(2):48-60.
[36]杜成斌, 尚岩. 三级配混凝土静、动载下力学细观破坏机制研究[J]. 工程力学, 2006, 23(3):141-417. 
[37] 刘光廷, 王宗敏. 用随机骨料模型数值模拟混凝土材料的断裂[J]. 清华大学学报, 1996, 36(1):84-89.
[38] Agioutantis Z, Chatzopoulou E, Stavroulaki M. A numerical investigation of the effect of the interfacial zone in concrete mixtures under uniaxial compression: The case of the dilute limit[J]. Cement and concrete Research, 2000, 30(5):715-723.
[39] Ramesh G, Sotelino E D, Chen W F. Effect of transition zone on elastic module of concrete materials[J]. Cement and Research, 1996, 36(4):611-622. 
[40] Pedersen R P, Simone A, Sluys L J. Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete[J]. Cement and Concrete Research, 2013, 50(8):74-87.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州