苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
纤维优化对纤维水泥基复合材料应变硬化性能的影响
Influences of Fiber Optimization on Strain-hardening Behavior of Fiber Reinforced Cementitious Composites (FRCC)
2013年第1期
纤维水泥基复合材料;应变硬化;微观力学模型;纤维优化
Fiber reinforced cementitious composites; Strain-hardening; Micromechanics models; Fiber optimization
2013年第1期
1000-4637(2013)01-40-06
国家自然科学基金项目(11062007);教育部高等学校博士学科点专项科研基金项目(20101514120005)
牛恒茂1,3,邢永明1,赵燕茹2,米 力4
1. 内蒙古工业大学理学院,呼和浩特 010051;2. 内蒙古工业大学土木工程学院,010051;3. 内蒙古建筑职业技术学院建筑工程系,呼和浩特 010070 ;4. 鄂尔多斯职业学院建筑工程系,017000

牛恒茂1,3,邢永明1,赵燕茹2,米 力4

浏览量:
1000
摘 要:介绍了纤维增强水泥基复合材料(FRCC)取得应变硬化行为的微观力学模型,在该模型指导下,综述与分析了纤维类型、强度、长度、直径、体积掺量及纤维表面处理等因素变化对FRCC应变硬化能力的影响。研究成果表明,纤维优化能够稳定取得应变硬化行为或得到更大的应变硬化能力。 Abstract: The micromechanics models, which provide an opportunity to obtain strain-hardening behavior in fiber reinforced cementitious composites(FRCC), are introduced, and the effect of the fluctuation of fiber type, strength, length, diameter, volume content and fiber surface treatment on the properties of strain-hardening based on micromechanics models is summarized and analyzed. The research results indicate that the fiber optimization can improve the robustness of strain-hardening and achieve better capacity of strain-hardening.
英文名 : Influences of Fiber Optimization on Strain-hardening Behavior of Fiber Reinforced Cementitious Composites (FRCC)
刊期 : 2013年第1期
关键词 : 纤维水泥基复合材料;应变硬化;微观力学模型;纤维优化
Key words : Fiber reinforced cementitious composites; Strain-hardening; Micromechanics models; Fiber optimization
刊期 : 2013年第1期
DOI :
文章编号 : 1000-4637(2013)01-40-06
基金项目 : 国家自然科学基金项目(11062007);教育部高等学校博士学科点专项科研基金项目(20101514120005)
作者 : 牛恒茂1,3,邢永明1,赵燕茹2,米 力4
单位 : 1. 内蒙古工业大学理学院,呼和浩特 010051;2. 内蒙古工业大学土木工程学院,010051;3. 内蒙古建筑职业技术学院建筑工程系,呼和浩特 010070 ;4. 鄂尔多斯职业学院建筑工程系,017000

牛恒茂1,3,邢永明1,赵燕茹2,米 力4

摘要
参数
结论
参考文献
引用本文

摘   要:介绍了纤维增强水泥基复合材料(FRCC)取得应变硬化行为的微观力学模型,在该模型指导下,综述与分析了纤维类型、强度、长度、直径、体积掺量及纤维表面处理等因素变化对FRCC应变硬化能力的影响。研究成果表明,纤维优化能够稳定取得应变硬化行为或得到更大的应变硬化能力。

Abstract: The micromechanics models, which provide an opportunity to obtain strain-hardening behavior in fiber reinforced cementitious composites(FRCC), are introduced, and the effect of the fluctuation of fiber type, strength, length, diameter, volume content and fiber surface treatment on the properties of strain-hardening based on micromechanics models is summarized and analyzed. The research results indicate that the fiber optimization can improve the robustness of strain-hardening and achieve better capacity of strain-hardening.

关键词:
纤维水泥基复合材料;应变硬化;微观力学模型;纤维优化
扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加
微观力学模型指导下,探讨了纤维类型、强度、长度、直径、体积掺量及纤维表面处理等单一因素变化对FRCC应变硬化性能的影响,结果说明,纤维优化利于稳定应变硬化行为的产生或取得更大的应变硬化能力。
  当前在FRCC中对纤维多因素协同影响其应变硬化行为的研究较少,因此,系统研究纤维相关因素的协同变化对FRCC应变硬化性能的影响应是下一阶段纤维优化研究的重点。
[1] Li V C. On Engineered cementitious composites: a review of the material and its applications[J]. Adv Concrete Technol, 2003, 1(3): 215.
[2] Bentur A, Mindess S. Fiber reinforced cementitious composites[M].Amsterdam: Elsevier Science Publishers, 1990.
[3] Li V C. Large volume high performance applications of fibers in civil engineering[J]. Applied Polymer Science , 2002,83(3): 660-86.
[4] Li V C, S. Wang, C. Wu. Tensile strain-hardening behavior of polyvinyl alcohol-engineered cementitious composite (PVA-ECC) [J]. ACI MaterialsJournal, 2001, 98 (6): 483-92.
[5] Li V C. 高延性纤维增强水泥基复合材料的研究进展及应用[J]. 硅酸盐学报,2007, 35(4):531-36.
[6] Li V C, Mishra D K, Wu H C. Matrix design for pseudo strain-hardening fiber reinforced cementitious composites [J]. Materials and Structures, 1995, 28(10): 586- 95.
[7] JCI-DFRCC Committee. DFRCC terminology and applica tion concepts [J]. Advanced Concrete Technology, 2003(3): 335.
[8] Y.Y. Kim, H. J. Kong, Li V C. Design of engineered cementitious composite suitable for wet-mixture shotcreting[J]. ACI Materials, 2003, 100 (6):511.
[9] Marshall, D B, Cox B N. A J-integral method for calculating steady- state matrix cracking stresses in composites [J]. Mechanics of Material, 1988(7):127.
[10] Lin Z, Kanda T, Li V C. On interface property charac terization and performance of fiber-reinforced cementi tious composites[J]. Concr Sci Eng , 1999(1):173.
[11] Kanda T. Design of engineered cementitious composites for ductile seismic resistant elements, in department of civil and environmental engineering[D]. Ann Arbor: University of Michigan, 1998.
[12] Wu C. Micromechanical tailoring of PVA-ECC for struc tural applications in departmental of civil and environmental engineering[D]. Ann Arbor: University of Michigan, 2001.
[13] Li V C. From micromechanics to structural engineering—The design of cementitous composites for civil engineering applications[J]. Struc Mechanics and Earthquake Engineering, 1993, 10(2): 37-48.
[14] Fischer G., Li V C. Effect of fiber reinforcement on the response of structural members [J]. Engineering Fracture Mechanics, 2007, 74: 258-272.
[15] B. Feleko?lu, Kamile Tosun, et al. Effects of fibre type and matrix structure on the mechanical performance of self-compacting micro-concrete composites[J]. Cement and Concrete Research, 2009, 39:1023.
[16] De Lhoneux B, Kalbskopf R, Kim P, et al. Development of high tenacity polypropylene fibers for cementitious composites. In: Proceedings of the JCI international workshop on ductile fiber reinforced cementitious composites (DFRCC) -application and evaluation, Takayama, Japan; 2002.
[17] S.F.U. Ahmed, M. Maalej. Tensile strain hardening beha viour of hybrid steel-polyethylene fibre reinforced cementitious composites[J]. Construction and Buiding Materials, 2009, 23: 96-106.
[18] 张君,居贤春,郭自力. PVA纤维直径对水泥基ECC抗拉性能的影响[J]. 建筑材料学报, 2009, 12 (6): 706-10.
[19] Lin Z, Li V C. Crack bridging in fiber reinforced cementi-tious composites with slip - hardening interfaces [J]. Mechanics and Physics of Solids, 1997, 45( 5) :763- 87.
[20] Hiroyuki Takashima, Kiyotaka Miyagai, et al. A design app roach for the mechanical properties of polypropylene discon tin uous fiber reinforced cementitious composites by extrusion mol ding[J]. Engineering Fracture Mechanics, 2003, 70: 853-870.
[21] 徐世烺. 超高韧性绿色 ECC 新型材料研究及应用[R]. 大连: 大连理工大学, 2007. 
[22] Radon C, Li V C, Wu C, et al. Measuring and Modifying Interface Properties of PVA Fiber in ECC Matrix[J]. Materials in Civil Engineering, 2001, 13(6): 399-406.
[23] Kanda T, Li V C. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix[J]. Materials in Civil Engineering, 1998, 10(1): 5-13.
[24] Li V C, Wu C, Wang Sh X, et al. Interface Tailoring for Str ain-Hardening PVA-ECC [J]. ACI Mater, 2002, 99(5): 463-72.
[25] Hwai-Chung Wu, Li V C. Fiber/cement interface tailoring with plasma treatment[J]. Cement and Concrete Composites, 1999, 21: 205.   
[26] Kamile Tosun, B.Felekolu. Multiple cracking response of plasma treated polyethylene fiber reinforced cementitious composites under flexural loading[J]. Cement and Concrete Composites, 2012, 34: 508.
[27] Li V C, Wu H C, Chan Y W. Effect of plasma treatment of polyethylene fibers on interface and cementitious composite properties[J]. American Ceramics Society, 1996, 79(3):700-04.
[28] Kim P J. Micromechanics based durability study of lightweight thin sheet fiber reinforced cement composites, in department of civil and environmental engineering. Ann Arbor: University of Michigan; 1999:486.
[29] Stang H, Mobasher B, Shah SP. Quantitative damage characterization in polypropylene fiber reinforced concrete[J]. Cem Concr Res, 1990, 20(4): 540-58.
[30] Takashima H, Miyagai K, Hashida T, Li VC. A design approach for the mechanical properties of polypropylene discontinuous fiber reinforced cementitious composites by extrusion molding[J]. Eng Fract Mechs, 2003, 70: 853-70.
[31] 廖宪廷, 何元. PP纤维水泥ECC的界面行为Ⅱ——断裂面的观察与形态研究[J]. 建筑材料学报, 2000, 3(1):64-67.
[32]  王为农, 姜艳书, 张洪福. 改性聚丙烯纤维混凝土在防渗工程上的应用[J].产业用纺织品, 2001, 12(18): 27-28.
[33] 高德川, 倪建华. 等离子体处理优化PP纤维水泥复合材料的界面[J]. 建筑材料学报, 2001, 4(1):79-83.
[34] B.Feleko?lu, K.Tosun, B.Baradan. A comparative study on the flexural performance of plasma treated polypropylene fiber reinforced cementitious composites[J]. Mater Process Technol, 2009, 209 (11):5133-44.
 

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州