苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊

全部文章

混凝土研究

混凝土早强性能研究进展和展望
混凝土早强性能研究进展和展望
  • 丁 斌1,欧阳利军2,房钰柯2
2020年第9期
摘要
引用本文
摘   要:基于国内外的研究成果,将早强型混凝土的制备方法分为掺早强剂、使用特种水泥和掺高分子聚合物三种。分别归纳总结了这三种方法对混凝土早强性能的影响,并简要分析了各制备方法所存在的问题。此外,介绍了目前提高超高性能混凝土(UHPC)早强性能的方法,并对其未来的研究方向进行了展望。 Abstract: Based on the research results at home and abroad, the preparation methods of early-strength concrete are divided into three types: early strength admixtures, special cement-based materials and high-molecular polymer. The effects of these three methods on the early strength of concrete are summarized. The problems of each preparation method are briefly analyzed. In addition, the current method of ultra-high performance concrete (UHPC) to improve the early strength performance is introduced, and its future research directions are prospected.
丁斌,欧阳利军,房钰柯.混凝土早强性能研究进展和展望[J].混凝土与水泥制品,2020(9):24-29. DING B,OUYANG L J,FANG Y K.Review and Prospect of Early Strength Performance of Concrete[J].CHINA CONCRETE AND CEMENT PRODUCTS,2020(9):24-29.
矿物掺合料对水泥基材料抗侵蚀性能的影响
矿物掺合料对水泥基材料抗侵蚀性能的影响
  • 裘智辉1,2,渠亚男1,2,仲新华1,2,李连吉1,2,孔庆欣1,2,苏婉玉1,2
2020年第9期
摘要
引用本文
摘   要:研究了石灰石粉、硅灰-石灰石粉、硅灰-粉煤灰、硅灰-矿渣粉和纳米Al2O3、纳米Fe2O3对全浸泡水泥基胶砂抵抗硫酸盐和氯盐复合溶液侵蚀性能的影响,探讨了不同组成水泥基材料增强抗侵蚀性的可行性。测试了水泥基胶砂的外观形貌、强度,并利用XRD分析了侵蚀试样的物相组成。结果表明,硅灰-矿渣粉增强水泥基材料的抗侵蚀性能较好。 Abstract: The effects of limestone powder, silica ash-limestone powder, silica ash-slag powder nano-Al2O3 and nano-Fe2O3 on the resistance of full-soaked mortar to the erosion of sulfate and chlorine-salt composite solutions were studied. The feasibility of enhancing the resistance of mortar to corrosion of different composed cement-based materials was discussed. The appearance and strength loss of the mortar were tested to characterize the degree of damage to the test piece, and the object composition of the erosion sample was analyzed by X-ray diffraction instrument. The results show that it is feasible to enhance the resistance of mortar with silicon ash-slag powder.
裘智辉,渠亚男,仲新华,等.矿物掺合料对水泥基材料抗侵蚀性能的影响[J].混凝土与水泥制品,2020(9):20-23,29. QIU Z H,QU Y N,ZHONG X H,et al.Study on Effect of Mineral Doping on Anti-erosion Properties of Cement-based Materials[J].CHINA CONCRETE AND CEMENT PRODUCTS,2020(9):20-23,29.
湿喷混凝土配合比优化的研究及应用
湿喷混凝土配合比优化的研究及应用
  • 严少洋1,2,闫 松3,刘永胜4
2020年第9期
摘要
引用本文
摘   要:针对某金矿破碎、易风化的围岩支护难度大等特点,采用湿喷混凝土技术实施机械化施工。研究了水泥掺量、纤维掺量、水灰比及砂率对湿喷混凝土可泵性及强度的影响。并通过正交试验方法,讨论了掺合料对湿喷混凝土坍落度、扩展度、抗压与抗折强度的影响规律。结果表明:增加水灰比能显著提高湿喷混凝土的坍落度,纤维用量增大对强度变化不明显但其对扩展度影响较大;砂率增大虽然能够增大混凝土的流动性但是强度呈下降趋势;通过极差分析结果得出了影响混凝土强度的显著因素及最优配合比,该配合比成功应用于实际工程。 Abstract: Aiming at the characteristics of crushing and weathering surrounding rock which was difficult to support of a gold mine, the wet shotcreting technology was applied to carry out mechanized construction. The effects of cement content, fiber content, water-cement ratio and sand ratio on the pump ability and strength of wet shotcrete as well as the effects of admixture on slump, extension, compression strength and flexural strength of wet shotcrete were studied by orthogonal test. The results show that the slump of wet shotcrete can be significantly increased by increasing the water-cement ratio, and the increase of fiber content has no obvious effect on the strength but has a great influence on extension. Although the increase of sand ratio can increase the fluidity of concrete, it shows a downward trend to the strength. Through range analysis, the significant factors affecting the strength of concrete and the optimal mix proportion are obtained. The mix proportion has been successfully applied to practical engineering.
严少洋,闫松,刘永胜.湿喷混凝土配合比优化的研究及应用[J].混凝土与水泥制品,2020(9):16-19. YAN SY,YAN S,LIU Y S.Research on Mix Proportion Optimization of Wet Shotcrete and Application[J].CHINA CONCRETE AND CEMENT PRODUCTS,2020(9):16-19.
气凝胶-水泥复合多孔材料的孔结构与硬化性能
气凝胶-水泥复合多孔材料的孔结构与硬化性能
  • 路 珏1,2,蒋 俊1,卢忠远1,李 军1
2020年第9期
摘要
引用本文
摘   要:采用体积取代法将气凝胶浆料引入水泥基体中,制备了气凝胶-水泥复合多孔材料(ACPC),结合压汞(MIP)、氮吸附(NAD)和扫描电子显微镜(SEM)对ACPC孔结构和微观形貌进行表征,研究了ACPC的孔结构和硬化性能。试验结果表明,当气凝胶浆料取代量由0 增加到66%时,材料孔隙率从23.0%上升至78.1%,平均孔径从45.3 nm增加至198.3 nm。气凝胶的引入可以细化孔结构,材料介孔孔容由0.03 mL/g增加到0.20 mL/g,孔结构得到改善。在水泥浆体中引入气凝胶浆料,可以得到干密度为365~1 262 kg/m3、抗压强度为0.8~24.1 MPa、导热系数为0.066~0.364 W/(m·K)的ACPC。 Abstract: Aerogel slurry was introduced into cement system to prepare aerogel-cement porous composites (ACPC) by volume substitution method. MIP, NAD and SEM were used to characterizate the pore structure and morphology of ACPC. The pore structure and hardened properties of ACPC were investigated. The results show that the porosity of ACPC increases from 23% to 78.1% and the average pore diameter of ACPC increases from 45.3 nm to 198.3 nm with the increasing aerogel slurry replacement from 0 to 66 %. The aerogel slurry can refine voids, and the mesoporous volume increases from 0.03 mL/g to 0.20 mL/g. Adding aerogel slurry into cement paste can get ACPC with a dry density, compressive strength and thermal conductivity of 365~1 262 kg/m3, 0.8~24.1 MPa, and 0.066~0.364 W/(m·K), respectively.  
路珏,蒋俊,卢忠远,等.气凝胶-水泥复合多孔材料的孔结构与硬化性能[J].混凝土与水泥制品,2020(9):11-15. LU J,JIANG J,LU Z Y,et al.Study on Pore Structure Characterization and Hardened Properties of Aerogel-Cement Porous Composites[J].CHINA CONCRETE AND CEMENT PRODUCTS,2020(9):11-15.
3D打印混凝土相关性能研究进展
3D打印混凝土相关性能研究进展
  • 段 严,秦先涛
2020年第9期
摘要
引用本文
摘   要:从流动性、黏结强度、凝结时间、纤维增强等方面概括了目前3D打印混凝土的研究进展,分析了外加剂、骨料级配和特殊材料应用于改善3D打印混凝土流动性的现状;总结了3D打印混凝土层间黏结强度的不足及改善措施;从外加剂和水泥的选择上探讨了3D打印混凝土凝结时间的控制方案,分析了纤维用于3D打印混凝土中的优势以及特殊性;结合现状对3D打印混凝土未来研究方向进行了展望。 Abstract: The research progress of 3D printed concrete (3DPC) from fluidity, bond strength, setting time and fiber reinforcement is summarized. Specifically, the fluidity of 3DPC is analyzed based on the additive, gradation and special materials. While the weaknesses of bond strength of 3DPC and improvement measures are summarized. Then, the control scheme for the setting time is researched from the point of additive and cement. Meanwhile, the advantage and particularity of the use of fiber in 3DPC are analyzed. At last, the future research directions of 3DPC are proposed for promoting the development of 3DPC.
段严,秦先涛.3D打印混凝土相关性能研究进展[J].混凝土与水泥制品,2020(9):5-10. DUAN Y,QIN X T.Research Progress on the Properties of 3D Printed Concrete[J].CHINA CONCRETE AND CEMENT PRODUCTS,2020(9):5-10.
超高性能混凝土(UHPC)在装配式建筑中的应用及质量控制指标
超高性能混凝土(UHPC)在装配式建筑中的应用及质量控制指标
  • 樊俊江,於林锋
2020年第9期
摘要
引用本文
摘   要:分析了两类超高性能混凝土(UHPC)在装配式建筑中的应用前景与相应的质量指标体系。结果表明:结构类超高性能混凝土可用于装配式浆锚搭接与装配式预制构件中,建议其抗压强度不低于120 MPa、抗弯强度不低于14 MPa、抗拉强度不低于7 MPa;装饰类超高性能混凝土可用于装配式建筑外墙装饰,建议其抗压强度不低于100 MPa、抗弯强度不低于10 MPa、抗拉强度不低于5 MPa;装配式建筑用超高性能混凝土的28 d干缩不宜大于300 με,3 d自收缩不大于800 με,28 d氯离子扩散系数不宜大于0.30×10-12 m2/s。 Abstract: The application prospect and corresponding quality index system of two kinds of ultra-high performance concrete(UHPC) in prefabricated buildings were analyzed. The results show that the structural ultra-high performance concrete can be used in the assembly type of slurry anchor lap and assembly type of prefabricated components, and its compressive strength is not less than 120 MPa, bending strength is not less than 14 MPa, and tensile strength is not less than 7 MPa. Decorative ultra-high performance concrete can be used for decoration of exterior wall of prefabricated building. It is suggested that its compressive strength should not be less than 100 MPa, bending strength should not be less than 10 MPa and tensile strength should not be less than 5 MPa. The 28 d dry shrinkage of UHPC for prefabricated building should not be greater than 300 με, the 3 d self shrinkage should not be greater than 800 με, and the 28 d chloride diffusion coefficient should not be greater than 0.30×10-12 m2/s.
樊俊江,於林锋.超高性能混凝土(UHPC)在装配式建筑中的应用及质量控制指标[J].混凝土与水泥制品,2020(9):1-4. FAN J J,YU L F.Analysis of Application of Ultra-high Performance Concrete in Prefabricated Building and Its Quality Control Index[J].CHINA CONCRETE AND CEMENT PRODUCTS,2020(9):1-4.
上一页
1

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州