苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
基于超声波测试的冻融循环作用下混凝土强度损伤演变研究
Study on Damage Evolution of Concrete Strength Under Freeze-thaw Cycles Action Based on Ultrasonic Tests
2021年第5期
超声波波速;冻融循环;混凝土;强度损伤;动弹性力学参数
Ultrasonic wave velocity; Freeze-thaw cycle; Concrete; Strength damage; Dynamic elastic mechanical parameter
2021年第5期
10.19761/j.1000-4637.2021.05.021.05
第二次青藏高原综合科学考察研究项目(2019QZKK0905)。
黄奕霖1,严武建2,牛富俊1
1. 华南理工大学 土木与交通学院,广东 广州 510000;2.中国地震局黄土地震工程重点实验室, 甘肃 兰州 730000

黄奕霖1,严武建2,牛富俊1

黄奕霖,严武建,牛富俊.基于超声波测试的冻融循环作用下混凝土强度损伤演变研究[J].混凝土与水泥制品,2021(5):21-25.

HUANG Y L,YAN W J,NIU F J.Study on Damage Evolution of Concrete Strength Under Freeze-thaw Cycles Action Based on Ultrasonic Tests[J].CHINA CONCRETE AND CEMENT PRODUCTES,2021(5):21-25.

浏览量:
1000
摘   要:针对高寒地区混凝土抗冻耐久性问题,在混凝土中加入不同掺量的粉煤灰研究其抗冻性能,通过非金属声波检测仪进行冻融循环过程中混凝土强度无损测试,研究了冻融循环作用下混凝土强度损伤和动弹性力学参数的演化特征,分析了冻融循环过程中混凝土声波波速与力学性能变化规律。研究结果表明:掺入引气剂能够提高混凝土的抗冻性,相同引气剂掺量下,粉煤灰掺量为10%的混凝土抗冻性较好;冻融循环过程中,超声波纵波波速、横波波速与动弹性模量、动剪切模量均随着冻融循环次数的增加呈相似性衰减,且存在较高相关性。 Abstract: In view of the problem of frost resistance durability of concrete in alpine area, the frost resistance of concrete was studied by adding fly ash with different content. By using non-metallic acoustic wave detector to test the strength of concrete during freeze-thaw process, the characteristics of strength damage and dynamic elastic mechanical parameters evolution of concrete under freeze-thaw cycle were studied. The change law of concrete acoustic wave speed and mechanical properties during the freeze-thaw cycle were analyzed. The results show that the frost resistance of concrete can be improved by adding air entraining agent, and the frost resistance of concrete with 10% fly ash content is better than that of 20% fly ash content under the same air entraining agent. The ultrasonic longitudinal wave velocity and shear wave velocity, dynamic elastic modulus and dynamic shear modulus attenuate similarly with the increase of freeze-thaw cycle times during freeze-thaw process, and there is a correlation between them.
英文名 : Study on Damage Evolution of Concrete Strength Under Freeze-thaw Cycles Action Based on Ultrasonic Tests
刊期 : 2021年第5期
关键词 : 超声波波速;冻融循环;混凝土;强度损伤;动弹性力学参数
Key words : Ultrasonic wave velocity; Freeze-thaw cycle; Concrete; Strength damage; Dynamic elastic mechanical parameter
刊期 : 2021年第5期
DOI : 10.19761/j.1000-4637.2021.05.021.05
文章编号 :
基金项目 : 第二次青藏高原综合科学考察研究项目(2019QZKK0905)。
作者 : 黄奕霖1,严武建2,牛富俊1
单位 : 1. 华南理工大学 土木与交通学院,广东 广州 510000;2.中国地震局黄土地震工程重点实验室, 甘肃 兰州 730000

黄奕霖1,严武建2,牛富俊1

黄奕霖,严武建,牛富俊.基于超声波测试的冻融循环作用下混凝土强度损伤演变研究[J].混凝土与水泥制品,2021(5):21-25.

HUANG Y L,YAN W J,NIU F J.Study on Damage Evolution of Concrete Strength Under Freeze-thaw Cycles Action Based on Ultrasonic Tests[J].CHINA CONCRETE AND CEMENT PRODUCTES,2021(5):21-25.

摘要
参数
结论
参考文献
引用本文

摘   要:针对高寒地区混凝土抗冻耐久性问题,在混凝土中加入不同掺量的粉煤灰研究其抗冻性能,通过非金属声波检测仪进行冻融循环过程中混凝土强度无损测试,研究了冻融循环作用下混凝土强度损伤和动弹性力学参数的演化特征,分析了冻融循环过程中混凝土声波波速与力学性能变化规律。研究结果表明:掺入引气剂能够提高混凝土的抗冻性,相同引气剂掺量下,粉煤灰掺量为10%的混凝土抗冻性较好;冻融循环过程中,超声波纵波波速、横波波速与动弹性模量、动剪切模量均随着冻融循环次数的增加呈相似性衰减,且存在较高相关性。

Abstract: In view of the problem of frost resistance durability of concrete in alpine area, the frost resistance of concrete was studied by adding fly ash with different content. By using non-metallic acoustic wave detector to test the strength of concrete during freeze-thaw process, the characteristics of strength damage and dynamic elastic mechanical parameters evolution of concrete under freeze-thaw cycle were studied. The change law of concrete acoustic wave speed and mechanical properties during the freeze-thaw cycle were analyzed. The results show that the frost resistance of concrete can be improved by adding air entraining agent, and the frost resistance of concrete with 10% fly ash content is better than that of 20% fly ash content under the same air entraining agent. The ultrasonic longitudinal wave velocity and shear wave velocity, dynamic elastic modulus and dynamic shear modulus attenuate similarly with the increase of freeze-thaw cycle times during freeze-thaw process, and there is a correlation between them.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)相同粉煤灰掺量下,未掺引气剂的混凝土试件的初始纵波波速高于掺引气剂组试件,但在冻融循环300次后,未掺引气剂组试件的纵波波速低于或等于掺引气剂组,说明掺引气剂的混凝土性能衰减相对较慢;横波波速变化与纵波波速相似。
(2)冻融循环过程中,3组混凝土试件的动弹性模量和动剪切模量变化总体呈较平缓下降趋势,不掺引气剂的混凝土试件相对于掺引气剂组试件动弹性模量和动剪切模量减小较多。掺等量引气剂时,粉煤灰掺量10%比掺20%具有更好的抗冻性。
(3)冻融过程中3组混凝土试件的泊松比介于0.14~0.21之间,与相对动弹性模量和相对动剪切模量的变化趋势存在一定相关性;在冻融循环300次后,A组和D组的泊松比增大,说明冻融循环导致混凝土内部结构疏松,使混凝土强度降低。
(4)粉煤灰掺量和是否掺引气剂对混凝土的抗冻性具有较大影响;冻融过程中超声波纵波波速、横波波速与动弹性模量与动剪切模量随着冻融循环次数的增加呈相似性衰减,且具有一定相关性。

[1] ANGST U,ELSENER B,LARSEN C K,et al.Critical Chloride Content in Reinforced Concrete-A Review[J].Cement and Concrete Research,2009,39(12):1122-1138.
[2] CLELAND K.Assessment of the Durability of Concrete From Its Permeation Properties: A Review[J].Construction and Building Materials,2001,15(2):93-103.
[3] SHI X,NING X,FORTUNE K,et al.Durability of Steel Reinforced Concrete in Chloride Environments: An Overview[J].Construction and Building Materials,2012,30:125-138.
[4] STEWART M G,ROSOWSKY D V.Time-Dependent Reliability of Deteriorating Reinforced Concrete Bridge Decks[J].STRUCTURAL SAFETY,1998,20(1):91-110.
[5] PIGEON M,PLEAU R.Durability of Concrete in Cold Climates[M].London:E and FN Spon,1992:12-23.
[6] MEHTA P K,MONTEIRO P.Concrete Structure, Properties and Materials[M].America:Prentice Hall,1993.
[7] KAMINETZKY D.Design and Construction Failures[M].New York:McGraw-Hill,1991.
[8] MEHTA P K,MONTEIRO P.Concrete Structure, Properties and Materials[M].America:Prentice Hall,1993.
[9] MINDESS S,YOUNG J F,Darwin D.Concrete[M].America:Prentice Hall,2003.
[10] XU Z,HOOTON R D.Migration of alkali ions in mortar due to several mechanisms[J].Cement and Concrete Research,1993,23(4):951-961.
[11] THOMAS M,ROGERS C A.Prevention of Damage Due to Alkali-Aggregate Reaction(AAR) in Concrete Construction-Canadian Approach[J].Cement Concrete and Aggregates,1997,19(1):26-30.
[12]  ROY S K,CHYE L K,NORTHWOOD D O.Chloride Ingress in Concrete as Measured by Field Exposure Tests in the Atmospheric, Tidal and Submerged Zones of a Tropical Marine Environment[J].Cement and Concrete Research,1993,23(6):1289-1306.
[13]  CHATTERJI S.On the Applicability of Fick’s Second Law to Chloride Ion Migration Through Portland Cement Concrete[J].Cement and Concrete Research,1995,25(2):299-303.
[14] 潘钢华,秦鸿根,孙伟,等.粉煤灰混凝土冻融破坏机理研究[J].建筑材料学报,2002(1):37-41.
[15] 许辉,谢友军,龙广成,等.引气粉煤灰混凝土抗冻融耐久性的研究粉煤灰[J].粉煤灰,2004(6):3-5.
[16] 程云虹,闫俊,刘斌,等.粉煤灰混凝土抗冻性能试验研究[J].低温建筑技术,2008(1):1-3.
[17] JHANG K Y.Nonlinear Ultrasonic Techniques for Nondestructive Assessment of Micro Damage in Material: A Review[J].International Journal of Precision Engineering and Manufacturing,2009,10(1):123-135.
[18] BREYSSE D.Nondestructive Evaluation of Concrete Strength: An Historical Review and a New Perspective by Combining NDT Methods[J].Construction and Building Materials,2012,33:139-163.
[19] JONES R,FACAOARU I.Recommendations for Testing Concrete by The Ultrasonic Pulse Method[J].Matériaux et Constructions,1969(2):275-284.
[20] LUO Q,BUNGEY J H.Using Compression Wave Ultrasonic Transducers to Measure the Velocity of Surface Waves and Hence Determine Dynamic Modulus of Elasticity for Concrete[J].Construction and Building Materials,1996,10(4):237-242.
[21] WEN S Y,LI X B.Experimental Study on Young’s Modulus of Concrete[J].Journal of Central South University of Technology, 2000,7(1):43-45.
[22] TRTNIK G,KAVCIC F,TURK G.Prediction of Concrete Strength Using Ultrasonic Pulse Velocity and Artificial Neural Networks[J].Ultrasonics,2009,49(1):53-60.
[23] 黄星,李东庆,明锋,等.冻结粉质黏土声学特性与物理力学性质试验研究[J].岩石力学与工程学报,2015,34(7):1489-1496.

黄奕霖,严武建,牛富俊.基于超声波测试的冻融循环作用下混凝土强度损伤演变研究[J].混凝土与水泥制品,2021(5):21-25.

HUANG Y L,YAN W J,NIU F J.Study on Damage Evolution of Concrete Strength Under Freeze-thaw Cycles Action Based on Ultrasonic Tests[J].CHINA CONCRETE AND CEMENT PRODUCTES,2021(5):21-25.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州