[1] 李杰,任晓丹.混凝土随机损伤力学研究进展[J].建筑结构学报,2014,35(4):20-29.
[2] 吴中伟.高性能混凝土[M].中国铁道出版社,1999.
[3] 吴中伟.绿色高性能混凝土与科技创新[J].建筑材料学报,1998(1):1-7.
[4] 王巍.基于CT试验的混凝土细观破裂过程研究[D].保定:河北农业大学,2015.
[5] BERTHAUD Y,RINGOT E,SCHMIT N.Experimental Measurement of Localization for Tensile Tests on Concrete// Fractuer[C]//Processes in Concrete,Rock and Ceramics.London:Chapman and Hall,1991:41-50.
[6] MIHASHI H,NOMURA N,NIISEKI S.Influence of Aggregate Size on Fracture Process Zone of Concrete Deteched with Three-dimensional Acoustic Emission Technique[J].Cement and Concrete Research,1991,21:737-744.
[7] LI Z J,SHAH S P.Localization of Microcracking in Concrete Under Uniaxial Tension[J].ACI Material Journal,1994,91(4):372-381.
[8] SUNIL P,JASON W.Assessment of Localized Damage in Concrete Under Compression Using Acoustic Emission[J].Journal of Materials in Civil Engineering,2006,18(3):325-333.
[9] SAGAR R,PRASAD B.An Experimental Study on Acoustic Emission Energy as a Quantitative Measure of Size Independent Specific Fracture Energy of Concrete Beams[J].Construction and Building Materials,2011,25(5):2349-2357.
[10] SAGAR R,PRASAD B.Fracture Analysis of Concrete Using Singular Fractal Functions with Lattice Beam Network and Confirmation with Acoustic Emission Study[J].Theoretical and Applied Fracture Mechanics,2011,55(3):192-205.
[11] ROSSI P,MAOU F,MARTIN E.Basic Creep Behavior of Concretes Investigation of the Physical Mechanisms by Using Acoustic Emission[J].Cement and Concrete Research,2012,42(1):61-73.
[12] SHAH A,RIBAKOV Y.Effectiveness of Nonlinear Ultrasonic and Acoustic Emission Evaluation of Concrete with Distributed Damages[J].Materials and Design,2010,31(8):3777-3784.
[13] 李建涛,于江,秦拥军,等.含不同初始缺陷混凝土单轴压缩条件下声发射特性试验研究[J].混凝土,2020(1):7-10,14.
[14] 陈伟强,靖洪文,高远,等.高温后混凝土损伤评估的声发射试验研究[J].混凝土,2020(3):54-58.
[15] 于江,吕旭滨,秦拥军,等.基于声发射技术的再生混凝土梁受弯过程的损伤特性研究[J].混凝土,2020(8):27-31.
[16] 朱宏平,徐文胜,陈晓强,等.利用声发射信号与速率过程理论对混凝土损伤进行定量评估[J].工程力学,2008,25(1):186-191.
[17] 张力伟.混凝土损伤检测声发射技术应用研究[D].大连:大连海事大学,2012.
[18] 张仕桦,刘京红,刘婷,等.掺粉煤灰再生混凝土声发射检测试验研究[J].混凝土与水泥制品,2021(4):94-98.
[19] 钱春香,叶连生,姚琏.声发射技术在混凝土轴心受拉试验中的应用[J].混凝土与水泥制品,1990(6):19-20.
[20] MORGAN I L,ELLINGER H,KLINKSIEK R,et al.Examination of Concrete by Computerized Tomography [J].ACI Journal,1980,77(1):23-27.
[21] LAWER J S,DENIS T K,SURENDRA P S.Measuring Three-dimensional Damage in Concrete Under Compression[J].ACI Materials Journal,2001,98(6):465-475.
[22] SUZUKI T,OGATA H,TAKADA R,et al.Use of Acoustic Emission and X-ray Computed Tomography for Damage Evaluation of Freeze-thawed Concrete[J].Construction and Building Materials,2010,24(12):2347-2352.
[23] 陈薇,杜红秀.基于CT试验的高强高性能混凝土高温下孔隙分析[J].混凝土,2018(6):6-8,12.
[24] 刘京红,史攀飞,杨跃飞,等.基于CT试验的混凝土裂纹扩展演化研究[J].混凝土,2017(4):74-77.
[25] 田威,党发宁,梁昕宇,等.基于图像处理技术的混凝土细观动力破损过程CT分析[J].水力发电学报,2009,28(5):147-151.
[26] 周双双,刘京红,李兵兵,等.基于CT图像的混凝土细观损伤数值模拟研究[J].混凝土与水泥制品,2022(4):29-32.
[27] 田威,党发宁,陈厚群.混凝土CT图像的3维重建技术[J].四川大学学报(工程科学版),2010,42(6):12-16.
[28] 张臻,闫宁霞,张迎雪.基于CT图像的界面强度对混凝土力学性能影响[J].混凝土,2017(10):37-40,51.
[29] 王梦蔚,卢广达,黄丹.基于CT扫描试验及数字图像处理的混凝土宏细观建模研究[J].混凝土,2014(11):27-30.
[30] 郝书亮,党发宁,陈厚群,等.基于CT图像的混凝土三维微观结构在ANSYS中的实现[J].混凝土,2009,3:13-15.
[31] 赵金侠,黄亮,谢建和.不同配比和养护条件对超高性能混凝土微观结构的影响[J].中国公路学报,2019,32(7):111-119.
[32] 王宗熙,姚占全,何梁,等.腐蚀介质下粉煤灰混凝土宏微观性能的时变损伤研究[J].长江科学院院报,2021,38(8):133-138.
[33] 何锐,王铜,陈华鑫,等.青藏高原气候环境对混凝土强度和抗渗性的影响[J].中国公路学报,2020,33(7):29-41.
[34] 黄正红,邓守春,李海波,等.拉伸荷载作用下裂纹扩展过程及交汇模式试验研究及其数值模拟[J].岩石力学与工程学报,2019,38(S1):2712-2723.
[35] 王怀文,刘彩平,鞠杨,等.扫描电镜下的数字散斑相关方法及其应用[J].实验力学,2006(2):135-143.
[36] 余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
[37] ESHELBY J D.The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems[J].Proceedings of the Royal Society,1957,241:376-396.
[38] ESHELBY J D.The Elastic Field Outside an Allipsoidal Inclusion[J].Proceedings of the Royal Society,1959,252:561-569.
[39] 肖建强,夏晓舟.三相混凝土抗压强度的细观力学研究[J].混凝土,2018(11):56-57,66.
[40] YUAN M,ZHOU D,CHEN J,et al.Study on the Calculation Method of Stress in Strong Constraint Zones of the Concrete Structure on the Pile Foundation Based on Eshelby Equivalent Inclusion Theory[J].Materials,2020,13(17):13173815 .
[41] 杜健欢,任东亚,黄杨权,等.超密实沥青混凝土Ⅰ-Ⅱ复合型裂纹扩展研究[J].西南交通大学学报,2021,56(4):864-871.
[42] HUANG Y,HU K,CHANDRA A.A Generalized Self-consistent Mechanics Method for Microcracked Solids[J].Journal of the Mechanics and Physics of Solids,1994,42(8):1273-1291.
[43] BENVENSITE Y.On the Mori-tanaka’s Method in Cracked Solids[J].Mechanics Research Communications,1986,13(4):193-201.
[44] 陈庆,朱合华,闫治国,等.基于自洽法的电化学沉积修复饱和混凝土细观描述[J].力学学报,2015,47(2):367-371.
[45] 马宝玉,兑关锁,阳生有.基于多项材料细观力学的混凝土干缩量预估[J].工程力学,2014,31(12):104-111.
[46] 韩佳.基于Mori-Tanaka方法的颗粒增强弹塑性基体复合材料力学特性研究[D].重庆:重庆大学,2014.
[47] NEMAT-NASSER S,HORI M.Micromechanics: Overall Properties of Heterogeneous Materials[J].Elsevier, The Netherlands,2010,107(3):505-511.
[48] VOIGT W.Bestimmung Der Elastizitatskonstanten Von Eisenglanz[J].Annalen Der Physik,1907,327(1):129-140.
[49] REUSS A.Berechnung Der Fliebgrenze Von Mischkristallen Auf Grund Der Plastizitatsbedingung für Einkristalle[J].Zamm-Journal of Applied Mathematics and Mechanics,1929,9(1):49-58.