苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
轻骨料混凝土高温力学性能劣化机理研究
Study on Deterioration Mechanism of Lightweight Aggregate Concrete at High Temperature
2022年第12期
轻骨料混凝土;冷却方式;高温;力学性能;裂缝
Lightweight aggregate concrete; Cooling method; High temperature; Mechanical property; Crack
2022年第12期
10.19761/j.1000-4637.2022.12.024.05
郭佳栋1,郭荣鑫2,3,黄会明1
1.天津市交通科学研究院,天津 300074;2.昆明理工大学 建筑工程学院,云南 昆明 650500;3.云南省土木工程防灾重点实验室,云南 昆明 650500

郭佳栋1,郭荣鑫2,3,黄会明1

郭佳栋,郭荣鑫,黄会明.轻骨料混凝土高温力学性能劣化机理研究[J].混凝土与水泥制品,2022(12):24-27,45.

GUO J D,GUO R X,HUANG H M.Study on Deterioration Mechanism of Lightweight Aggregate Concrete at High Temperature[J].China Concrete and Cement Products,2022(12):24-27,45.

浏览量:
1000
摘   要:测试了高温后轻骨料混凝土(LWC)的力学性能,探究了聚丙烯纤维掺量、高温温度(100、300、500、700、900 ℃)和冷却方式对LWC高温力学性能的影响,分析了LWC高温力学性能的劣化机理。结果表明:掺入适量的聚丙烯纤维可以提高LWC的残余抗压强度;在100~300 ℃和500~900 ℃区间温度时,各试件的烧失率增幅较大;经100 ℃高温后,喷水冷却的LWC残余抗压强度优于自然冷却的LWC,但经300 ℃高温后,相比于自然冷却,喷水冷却的LWC残余抗压强度降低幅度更大;自然冷却的LWC在300 ℃时出现较少裂缝,在500 ℃时裂缝快速发展;由于砂浆与骨料热膨胀系数的差异,喷水冷却使基体-骨料界面裂缝快速发展,LWC在300 ℃时便形成较多裂缝,故残余抗压强度降低幅度更大。 Abstract: The mechanical properties of the lightweight aggregate concrete(LWC) after high temperature were tested. The influences of polypropylene fiber content, high temperature(100、300、500、700、900 ℃) and cooling method on the high temperature mechanical properties of the LWC were explored, and its deterioration mechanism of high temperature mechanical properties was analyzed. The results show that adding proper amount of polypropylene fiber can improve the residual compressive strength of the LWC. At the range of 100~300 ℃ and 500~900 ℃, the loss on ignition rate of each specimen increases greatly. After being subjected to a high temperature of 100 ℃, the residual compressive strength of the LWC cooled by water spray is better than that of the natural cooling, but after 300°C, the residual compressive strength of the LWC cooled by the water spray has a greater decrease in strength compared to the natural cooling. For the naturally cooled LWC, the cracks are formed after a high temperature of 300 ℃, and the cracks develop rapidly after a high temperature of 500 ℃. Due to the difference in thermal expansion coefficient between mortar and aggregate, rapid cooling causes rapid development of mortar-aggregate interface cracks. Therefore, for the LWC cooled by water spray, the formation of large cracks can accelerate at 300 ℃, so the residual compressive strength decreases faster.
英文名 : Study on Deterioration Mechanism of Lightweight Aggregate Concrete at High Temperature
刊期 : 2022年第12期
关键词 : 轻骨料混凝土;冷却方式;高温;力学性能;裂缝
Key words : Lightweight aggregate concrete; Cooling method; High temperature; Mechanical property; Crack
刊期 : 2022年第12期
DOI : 10.19761/j.1000-4637.2022.12.024.05
文章编号 :
基金项目 :
作者 : 郭佳栋1,郭荣鑫2,3,黄会明1
单位 : 1.天津市交通科学研究院,天津 300074;2.昆明理工大学 建筑工程学院,云南 昆明 650500;3.云南省土木工程防灾重点实验室,云南 昆明 650500

郭佳栋1,郭荣鑫2,3,黄会明1

郭佳栋,郭荣鑫,黄会明.轻骨料混凝土高温力学性能劣化机理研究[J].混凝土与水泥制品,2022(12):24-27,45.

GUO J D,GUO R X,HUANG H M.Study on Deterioration Mechanism of Lightweight Aggregate Concrete at High Temperature[J].China Concrete and Cement Products,2022(12):24-27,45.

摘要
参数
结论
参考文献
引用本文

摘   要:测试了高温后轻骨料混凝土(LWC)的力学性能,探究了聚丙烯纤维掺量、高温温度(100、300、500、700、900 ℃)和冷却方式对LWC高温力学性能的影响,分析了LWC高温力学性能的劣化机理。结果表明:掺入适量的聚丙烯纤维可以提高LWC的残余抗压强度;在100~300 ℃和500~900 ℃区间温度时,各试件的烧失率增幅较大;经100 ℃高温后,喷水冷却的LWC残余抗压强度优于自然冷却的LWC,但经300 ℃高温后,相比于自然冷却,喷水冷却的LWC残余抗压强度降低幅度更大;自然冷却的LWC在300 ℃时出现较少裂缝,在500 ℃时裂缝快速发展;由于砂浆与骨料热膨胀系数的差异,喷水冷却使基体-骨料界面裂缝快速发展,LWC在300 ℃时便形成较多裂缝,故残余抗压强度降低幅度更大。

Abstract: The mechanical properties of the lightweight aggregate concrete(LWC) after high temperature were tested. The influences of polypropylene fiber content, high temperature(100、300、500、700、900 ℃) and cooling method on the high temperature mechanical properties of the LWC were explored, and its deterioration mechanism of high temperature mechanical properties was analyzed. The results show that adding proper amount of polypropylene fiber can improve the residual compressive strength of the LWC. At the range of 100~300 ℃ and 500~900 ℃, the loss on ignition rate of each specimen increases greatly. After being subjected to a high temperature of 100 ℃, the residual compressive strength of the LWC cooled by water spray is better than that of the natural cooling, but after 300°C, the residual compressive strength of the LWC cooled by the water spray has a greater decrease in strength compared to the natural cooling. For the naturally cooled LWC, the cracks are formed after a high temperature of 300 ℃, and the cracks develop rapidly after a high temperature of 500 ℃. Due to the difference in thermal expansion coefficient between mortar and aggregate, rapid cooling causes rapid development of mortar-aggregate interface cracks. Therefore, for the LWC cooled by water spray, the formation of large cracks can accelerate at 300 ℃, so the residual compressive strength decreases faster.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)随着高温温度的增加,LWC的质量降低,在100~300 ℃和500~900 ℃区间温度时,各试件的烧失率增幅较大。
(2)自然冷却条件下,500 ℃时,试件的残余抗压强度开始逐渐降低,掺入聚丙烯纤维有利于提高残余抗压强度。喷水冷却条件下,300 ℃时,试件的残余抗压强度大幅降低,且掺入聚丙烯纤维会加速残余抗压强度的降低。
(3)自然冷却条件下,300 ℃时,试件产生少量裂缝,界面过渡区结构完整;500 ℃时,基体脱水收缩产生放射状裂缝,随温度升高裂缝增多,基体与骨料膨胀差导致界面区产生径向裂缝。喷水冷却条件下,由于热膨胀系数差异,使基体与骨料变形差增大,裂缝宽度增加,界面性能在300 ℃时便开始劣化,故也导致了LWC残余抗压强度降低幅度更大,900 ℃时,喷水冷却致试件严重劣化,丧失结构完整性,无法观测。

[1] 蒋玉川,霍达,滕海文,等.页岩陶粒混凝土高温性能特征研究[J].建筑材料学报,2013,16(5):888-893.
[2] 李敏,钱春香,孙伟.高强混凝土火灾后性能变化规律研究[J].工业建筑,2002(10):34-36.
[3] 张科,黄海东.基于简化分析方法的混凝土高温爆裂数值模拟[J].防灾减灾工程学报,2020,40(2):268-278.
[4] 肖建庄,刘良林,董毓利,等.高性能混凝土高温爆裂研究进展[J].建筑科学与工程学报,2019,36(3):1-15.
[5] 吴熙,江佳斐,范兴朗,等.自密实轻骨料混凝土的高温性能[J].材料科学与工程学报,2014,32(3):313-317.
[6] KARAKOC M B.Effect of Cooling Regimes on Compressive Strength of Concrete with Lightweight Aggregate Exposed to High Temperature[J].Construction and Building Materials,2013, 41(2):21-25.
[7] 翟越,艾晓芹,邓子辰,等.受火温度和冷却方式对混凝土抗压强度影响[J].湖南大学学报(自然科学版),2014,41(11):74-80.
[8] 高超.混凝土及纤维混凝土高温后力学性能试验研究[D].扬州:扬州大学,2013.
[9] 贾福萍,王永春,渠艳艳,等.冷却方式和静置时间对高温后混凝土残余强度影响[J].建筑材料学报,2011,14(3):400-405.
[10] 郭荣鑫,何科成,马倩敏,等.改性轻骨料混凝土高温抗压性能及微观结构[J].建筑材料学报,2017,20(3):333-338,344.
[11] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.通用硅酸盐水泥:GB 175—2007[S].北京:中国标准出版社,2008.
[12] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.轻集料及其试验方法 第1部分:轻集料:GB/T 17431.1—2010[S].北京:中国标准出版社,2010.
[13] KANEMA M,MORAIS M V G,NOUMOWE A,et al.Experimental and Numerical Studies of Thermo-hydrous Transfers in Concrete Exposed to High Temperature[J].Heat and Mass Transfer,2007,44(2):149-164.
[14] YAO W J,PANG J Y,LIU Y S.Performance Degradation and Microscopic Analysis of Lightweight Aggregate Concrete AfterExposure to High Temperature[J].Materials,2020,13(7):1-15.
[15] 柯晓军,杨春辉,苏益声,等.冷却方式对高温后再生混凝土力学性能的影响[J].建筑材料学报,2017,20(5):794-800.
[16] 徐明,王韬,陈忠范.高温后再生混凝土单轴受压应力-应变关系试验研究[J].建筑结构学报,2015,36(2):158-164.
[17] 肖建庄,黄运标.高温后再生混凝土残余抗压强度[J].建筑材料学报,2006(3):255-259.
[18] TANYILDIZI H,COSKUN A.The Effect of High Temperature on Compressive Strength and Splitting Tensile Strength of Structural Lightweight Concrete Containing Fly Ash[J].Construction and Building Materials,2008,11(22):2269-2275.
[19] 刘雨姗,庞建勇,姚韦靖.页岩陶粒轻骨料混凝土高温后蠕变特性[J].建筑材料学报.2021,24(5):1096-1104.
[20] 王怀亮,朱建威.高性能轻骨料混凝土高温后受压本构关系研究[J].建筑结构学报,2019,40(11):200-209.
[21] 蒋文婷,王建民,程博.高温后陶粒混凝土性能试验研究[J].工业建筑,2014,44(2):103-107.
[22] 孙庆霞.纤维增强陶粒混凝土耐高温性能的实验研究[D].兰州:    兰州理工大学,2009.

郭佳栋,郭荣鑫,黄会明.轻骨料混凝土高温力学性能劣化机理研究[J].混凝土与水泥制品,2022(12):24-27,45.

GUO J D,GUO R X,HUANG H M.Study on Deterioration Mechanism of Lightweight Aggregate Concrete at High Temperature[J].China Concrete and Cement Products,2022(12):24-27,45.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州