[1] 张少华,王起才,张戎令,等.低温变温(5 ℃→-3 ℃)养护下不同水灰比混凝土抗氯离子渗透性试验研究[J].硅酸盐通报,2016,35(7):2014-2018.
[2] 杨伟,华敏琦,朱平华,等.吸附砂浆含量对混凝土力学与氯离子渗透性能的影响[J].硅酸盐通报,2020,39(5):1415-1420.
[3] 郭伟,秦鸿根,孙伟,等.外加剂与水胶比对混凝土氯离子渗透性的影响[J].硅酸盐通报,2010,29(6):1478-1483.
[4] 韩学强,詹树林,徐强,等.干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响[J].复合材料学报,2020,37(1):198-204.
[5] 白敏,蔡琳琳,牛荻涛,等.弯曲应力作用下钢纤维混凝土氯离子侵蚀性能[J].硅酸盐通报,2019,38(4):969-973.
[6] 姜文镪,刘清风.冻融循环下混凝土中氯离子传输研究进展[J].硅酸盐学报,2020,48(2):258-272.
[7] GOYAL A,POUYA H S,GANJIAN E,et al.A Review of Corrosion and Protection of Steel in Concrete[J].Arabian Journal for Science and Engineering,2018,43(10):5035-5055.
[8] BROOMFIELD J P.Corrosion of Steel in Concrete: Understanding, Investigation and Repair[M].New York:Taylor and Francis,2007.
[9] JAFFER S J,HANSSON C M.Chloride-induced Corrosion Products of Steel in Cracked-concrete Subjected to Different Loading Conditions[J].Cement and Concrete Research,2009,39(2):116-125.
[10] GREEN W K.Steel Reinforcement Corrosion in Concrete-An Overview of Some Fundamentals[J].Corrosion Engineering,Science and Technology,2020,55(4):289-302.
[11] Australasian Corroson Association.Annual Conference of the Australasian Corrosion Association[C].New York:Curran Associates Incorporated,2013.
[12] COLLEPARDI M,MARCIALIS A,TURRIZIANI R.Penetration of Chloride Ions into Cement Pastes and Concretes[J].Journal of the American Ceramic Society,1972,55(10):534-535.
[13] 余红发,孙伟.混凝土氯离子扩散理论模型[J].东南大学学报(自然科学版),2006(S2):68-76.
[14] 周剑.混凝土氯离子扩散性能影响因素的试验研究[D].杭州:浙江工业大学,2010.
[15] 杨燕,谭康豪,覃英宏.混凝土内氯离子扩散影响因素的研究综述[J].材料导报,2021,35(13):13109-13118.
[16] 陈强,彭建新.氯盐环境下考虑温湿度影响的钢筋混凝土梁桥二维扩散模型及可靠度分析[J].铁道科学与工程学报,2014,11(2):41-45.
[17] 鞠学莉,吴林键,刘明维,等.考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测[J].材料导报,2021,35(24):24075-24080,24087.
[18] 王麉一.混凝土受盐渍土环境中氯离子侵蚀的耐久性研究[D].兰州:兰州交通大学,2021.
[19] 王东方.钢筋砼构件氯离子侵蚀下钢筋初始锈蚀时间的计算方法[D].北京:北京工业大学,2003.
[20] 张伟,董志良,吕黄.混凝土氯离子二维扩散模型及工程验证[J].水运工程,2009(6):35-39.
[21] 周明,杨绿峰,陈正,等.圆柱体混凝土构件中氯离子扩散的解析研究[J].水利水运工程学报,2012(6):38-43.
[22] BASTIDAS A E,CHATEAUNEUF A,SANCHE S M,et al.A Comprehensive Probabilistic Model of Chloride Ingress in Unsaturated Concrete[J].Engineering Structures,2011,33(3):720-730.
[23] 张新春,武丁,王璋奇,等.输电线路钢筋混凝土氯离子二维扩散性数值研究[J].硅酸盐通报,2015,34(11):3251-3258.
[24] YANG L F,CHEN Z,GAO Q,et al.Compensation Length of Two-dimensional Chloride Diffusion in Concrete Using A Boundary Element Model[J].Acta Mechanica,2013,224(1):123-137.
[25] 杨绿峰,陈正,王燚,等.混凝土中氯离子二维扩散分析的边界元法[J].硅酸盐学报,2009,37(7):1110-1117.
[26] 周朋,谢松林,李强.水胶比对混凝土性能及气孔结构的影响分析[J].硅酸盐通报,2018,37(3):974-978.
[27] 金立兵,王珍,王振清,等.混凝土中氯离子渗透的试验与细观数值分析[J].土木与环境工程学报(中英文),2020,42(6):127-133.
[28] 冯庆革,姜丽,李浩璇,等.不同水胶比下粉煤灰混凝土抗氯盐及碳化腐蚀性能研究[J].混凝土,2011(9):44-46.
[29] 李响,阎培渝,阿茹罕.基于Ca(OH)2含量的复合胶凝材料中水泥水化程度的评定方法[J].硅酸盐学报,2009,37(10):1597-1601.
[30] 阎培渝,杨文言,崔路,等.低水胶比时水泥-粉煤灰复合胶结材的水化性能[J].建筑材料学报,1998(1):70-73.
[31] ZHANG Y S,SUN W,LIU Z Y,et al.One and Two Dimensional Chloride Ion Diffusion of Fly Ash Concrete Under Flexural Stress[J].Journal of Zhejiang University-SCIENCE A,2011,12(9): 692-701.
[32] ZHANG Y S,SUN W,CHEN S D,et al.Two-and Three-dimensional Chloride Ingress into Fly Ash Concrete[J].Journal of Wuhan University of Technology-Materials Science Edition, 2011,26(5):978-982.
[33] POON C S,KOU S C,LAM L.Compressive Strength,Chloride Diffusivity and Pore Structure of High Performance Metakaolin and Silica Fume Concrete[J].Construction and Building Materials,2006,20(10):858-865.
[34] 何廷树,苏富赟,包先诚,等.不同水胶比下矿渣粉与粉煤灰对混凝土强度及抗氯离子渗透性能的影响[J].混凝土,2010(1):86-88,81.
[35] 唐明,刘宏亮,李婧琦.同水胶比下混凝土中水泥-矿渣-粉煤灰-硅灰的混料效应[J].混凝土,2011(12):1-4,15.
[36] 邹洪波,罗小勇.压应力作用下混凝土中氯离子侵蚀性能研究[J].中国公路学报,2017,30(4):87-96.
[37] 王涛,裴存栋,韩万水,等.应力对混凝土中氯离子渗透性的影响[J].吉林大学学报(工学版),2015,45(4):1102-1106.
[38] 张伟平,张庆章,顾祥林,等.环境条件和应力水平对混凝土中氯离子传输的影响[J].江苏大学学报(自然科学版),2013,34(1):101-106.
[39] ZHANG L J,ZHANG J J,SUN G W,et al.Multi-scale Simulation of Two-dimensional Chloride Transport Under the Effect of Bending Load in Concrete[J].Frontiers in Physics,2021(3):1-15.
[40] 中国硅酸盐学会.《硅酸盐学报》创刊50周年暨中国硅酸盐学会2007年学术年会论文摘要集[C].北京:中国建材,2007.
[41] 黄海珍,武利强.温度路径对混凝土强度及氯离子渗透性影响研究[J].水利水电技术(中英文),2021,52(S1):312-315.
[42] 王本臻.非饱和混凝土氯离子传输研究[D].青岛:青岛理工大学,2013.
[43] SHAHEEN F,PRADHAN B.Effect of Chloride and Conjoint Chloride-sulfate Ions on Corrosion of Reinforcing Steel in Electrolytic Concrete Powder Solution(ECPS)[J].Construction and Building Materials,2015,101(12):99-112.
[44] 杨海成,杜安民,范志宏,等.温度对混凝土氯离子扩散性能的影响[J].水运工程,2015(10):20-26.
[45] 延永东,刘荣桂,陆春华,等.养护湿度对混凝土内氯离子传输的影响[J].哈尔滨工业大学学报,2016,48(12):148-152.
[46] CHENG Y,ZHANG Y,WU C,et al.Experimental and Simulation Study on Diffusion Behavior of Chloride Ion in Cracking Concrete and Reinforcement Corrosion[J].Advances in Materials Science and Engineering,2018,2018:8475384.