[1] 范维澄,王清安,姜冯辉,等.火灾学简明教程[M].合肥:中国科学技术大学出版社,1995.
[2] 路春森,屈立军,薛武平,等.建筑结构耐火设计[M].北京:中国建材工业出版社,1995.
[3] CHIDIGHIKAOBI P C.Thermal Effect on the Flexural Strength of Expanded Clay Lightweight Basalt Fiber Reinforced Concrete[J].Materials Today:Proceedings,2019,19:2467-2470.
[4] 石国星,王磊,赵燕茹,等.纤维对混凝土高温性能改善作用的研究进展[J].科技视界,2018(1):97-98.
[5] XARGAY H,FOLINO P,SAMBATARO L,et al.Temperature Effects on Failure Behavior of Self-compacting High Strength Plain and Fiber Reinforced Concrete[J].Construction and Building Materials,2018,165:723-734.
[6] ZHANG P,HUANG Y L,LI Y Q,et al.Influence Factors on the Properties of Ultrahigh-performance Fiber-reinforced Concrete Cured Under the Condition of Room Temperature[J].Advances in Civil Engineering,2018,2018:1-9.
[7] 杨珊,李祚,彭林欣,等.高温后PVA纤维增强水泥基复合材料力学性能试验研究[J].混凝土与水泥制品,2021(4):49-54.
[8] 魏晨,郭荣辉.玄武岩纤维的性能及应用[J].纺织科学与工程学报,2019,36(3):89-94.
[9] 赵继忠,史玉良,李鑫磊,等.纤维分布对聚合物水泥混凝土力学性能的影响研究[J].混凝土与水泥制品,2021(11):55-58,72.
[10] RAJ S,KUMAR V R,KUMAR B H,et al.Basalt:Structural Insight as a Construction Material[J].Sadhana,2017,42(1):75-84.
[11] VEJMELKOV?魣 E,KON?魣KOV?魣 D,SCHEINHERROV?魣 L,et al.High Temperature Durability of Fiber Reinforced High Alumina Cement Composites[J].Construction and Building Materials,2018,162:881-891.
[12] SIM J,PARK C,MOON D Y.Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures[J].Composites Part B,2005,36(6):504-512.
[13] HIGH C,SELIEM H M,EL-SAFTY A,et al.Use of Basalt Fibers for Concrete Structures[J].Construction and Building Materials,2015,96:37-46.
[14] REN W B,XU J Y,SU H Y.Dynamic Compressive Behavior of Basalt Fiber Reinforced Concrete After Exposure to Elevated Temperatures[J].Fire and Materials,2016,40(5):738-755.
[15] 任伟波,徐金余,白二雷.高温后玄武岩纤维增强混凝土的动态力学特性[J].爆炸与冲击,2015,35(1):36-42.
[16] KON?魣KOV?魣 D,?譒PEDLOV?魣 V,C?魣CHOV?魣 M,et al.Influence of Basalt Fibres and Aggregates on the Thermal Expansion of Cement-based Composites[J].Advanced Materials Research,2014,1054:17-21.
[17] 朴战东.高温后玄武岩纤维混凝土力学性能试验研究[D].郑州:郑州大学,2016.
[18] 王磊.玄武岩纤维混凝土高温后力学性能及损伤演化试验研究[D].呼和浩特:内蒙古工业大学,2017.
[19] 赵燕茹,刘道宽,王磊,等.玄武岩纤维混凝土高温后力学性能试验研究[J].混凝土,2019(10):72-75.
[20] 戎虎仁,王海龙,褚少辉,等.高温作用下不同掺量玄武岩纤维混凝土力学性能研究[J].粉煤灰综合利用,2020,34(1):56-60.
[21] 宋博.高温后玄武岩纤维混凝土断裂性能试验研究[D].呼和浩特:内蒙古工业大学,2018.
[22] 李曈,张晓东,刘华新,等.高温后玄武岩纤维混凝土力学性能试验研究[J].混凝土与水泥制品,2020(10):61-64.
[23] 秦毓雯.玄武岩纤维混凝土高温后耐久性能研究[D].徐州:中国矿业大学,2020.
[24] 李长安.玄武岩纤维混凝土耐高温性能分析[J].粉煤灰综合利用,2020,34(2):96-100.
[25] 杨智硕,陈明霞,叶梅新.超高强玄武岩纤维混凝土抗火性能[J].混凝土,2020(3):89-91,96.
[26] 孔祥清,袁绍林,刚锦坤,等.聚丙烯-玄武岩混杂纤维再生混凝土高温性能试验研究[J].科学技术与工程,2018,18(21):101-106.
[27] 郝松.持荷高温作用后玄武岩纤维混凝土力学性能研究[D].呼和浩特:内蒙古工业大学,2018.
[28] 赵燕茹,刘道宽,王磊.基于DIC玄武岩纤维混凝土高温后抗折损伤分析[J].混凝土,2021(2):42-46,62.
[29] 刘俊良,许金余,董宗戈,等.玄武岩纤维混凝土高温损伤的声学特性研究[J].混凝土,2016(2):56-59.
[30] ZHANG N,XU M F,SONG S,et al.Impact Resistance of Basalt Fiber Strain-hardening Cementitious Composites Exposed to Elevated Temperatures[J].Construction and Building Materials,2020,262:120081.
[31] JIANG C,CHEN D,WU Y,et al.Study on the Mechanisms and Properties of Repair Mortar for Hydraulic Concrete Surface[M].Heidelberg:Springer,2009.
[32] 金建东.玄武岩纤维增强混凝土抗氯离子渗透性能试验研究[D].哈尔滨:哈尔滨工程大学,2017.
[33] 刘浩喆.玄武岩—聚丙烯混杂纤维混凝土抗氯离子渗透性能试验研究[D].哈尔滨:哈尔滨工程大学,2017.
[34] 陈潇洋,李红云,邹春霞.玄武岩纤维轻骨料混凝土力学性能的试验研究[J].中国科技论文,2017,12(1):76-79.
[35] XUE W P,SHEN L,JING W,et al.Permeability Evolution and Mechanism of Thermally Damaged Basalt Fiber-reinforced Concrete Under Effective Stress[J].Construction and Building Materials,2020,251:119077.
[36] SHEN L H,WANG J Y,XU S L,et al.Flexural Behavior of TRC Contained Chopped Fibers Subjected to High Temperature[J].Construction and Building Materials,2020,262:120562.