[1] 樊云昌,曹兴国,陈怀荣.混凝土中钢筋腐蚀的防护与修复[M].北京:中国铁道出版社,2001.
[2] BERTOLINI L,CARSANA M,PEDEFERRI P.Corrosion Behaviour of Steel in Concrete in the Presence of Stray Current[J].Corrosion Science,2007,49(3):1056-1068.
[3] PAGE C L.Initiation of Chloride-induced Corrosion of Steel in Concrete:Role of the Interfacial Zone[J].Materials and Corrosion,2009,60(8):586-592.
[4] 国家市场监督管理总局,国家标准化管理委员会.建设用砂:GB/T 14684—2022[S].北京:中国标准出版社,2022.
[5] JAFFER S J,HANSSON C M.Chloride-induced Corrosion Products of Steel in Cracked-concrete Subjected to Different Loading Conditions[J].Cement and Concrete Research,2009,39(2):116-125.
[6] 杜应吉,李元婷.活性掺合料对地铁混凝土杂散电流的抑制作用[J].混凝土,2005(6):77-79.
[7] AGHAJANI A,URGEN M,BERTOLINI L.Effects of DC Stray Current on Concrete Permeability[J].Journal of Materials in Civil Engineering,2016,28(4):04015177.
[8] SUSANTO A,KOLEVA D A,COPUROGLU O,et al.Mechanical, Electrical and Microstructural Properties of Cement-based Materials in Conditions of Stray Current Flow[J].Journal of Advanced Concrete Technology,2013,11(3):119-134.
[9] SUSANTO A,KOLEVA D A,BREUGEL K V.The Effect of Water-to-cement Ratio and Curing on Material Properties of Mortar Specimens in Stray Current Conditions[J].Journal of Advanced Concrete Technology,2017,15(10):627-643.
[10] 贺鸿珠,史美伦,陈志源.粉煤灰对地铁杂散电流的抑制作用[J].混凝土与水泥制品,2001(1):21-23.
[11] 程飞,高祥彪,钱春香,等.矿物掺合料对混凝土抗杂散电流性能的影响[J].混凝土与水泥制品,2011(7):13-16.
[12] 丁庆军,吴雄,耿健.抑制杂散电流对水泥石固化氯离子能力的影响[J].建筑材料学报,2008(1):80-83.
[13] 胡曙光,耿健,丁庆军.杂散电流干扰下掺矿物掺合料水泥石固化氯离子的特点[J].华中科技大学学报(自然科学版),2008(3):32-34.
[14] PAN C G,GENG J,DING Q J.Stray Current Affects the Release of Bound Chloride Ions in Hydrated Cement Paste[J].International Journal of Electrochemical Science,2018:6098-6111.
[15] CHU H Q,WANG T T,GUO M Z,et al.Effect of Stray Current on Stability of Bound Chlorides in Chloride and Sulfate Coexistence Environment[J].Construction and Building Materials,2019,194:247-256.
[16] TANG L P,NILSSON L O.Rapid Determination of the Chloride Diffusivity in Concrete by Applying an Electrical Field[J].ACI Material Journal,1992,89(1):49-53.
[17] 耿健.杂散电流与氯离子共存环境下钢筋混凝土劣化机理的研究[D]. 武汉:武汉理工大学,2008.
[18] 朱瑶宏,邹玉生,耿健,等.杂散电流对氯离子在混凝土内部迁移过程的影响[J].武汉理工大学学报,2012,34(7):32-36.
[19] 王凯,林静,肖勇,等.地铁隧道盾构管片氯离子传输模型及特性分析[J].硅酸盐通报,2018,37(1):35-40,46.
[20] 王凯,赵杰,彭文瑞,等.杂散电流对氯离子向混凝土中传输性能的影响[J].建筑科学,2015,31(11):79-85.
[21] 倪源城,朱尔玉.杂散电流与受压荷载耦合作用下混凝土中的氯离子传输性能[J].水利学报,2021,52(8):1001-1010.
[22] DING Q J,GENG J,HU S G.The Effect of Stray Current on the Process and Threshold Concentration of Chloride Ion Causing Steel Bar Corrosion[J].Materials and Structures,2008,61:709-718.
[23] 吴雄.杂散电流和氯离子共同作用下钢筋混凝土的劣化特征研究[D].武汉:武汉理工大学,2008.
[24] 黄谦,王冲,杨长辉,等.电场与硫酸盐侵蚀共同作用下混凝土的劣化及其机理[J].硅酸盐学报,2016,44(2):239-245.
[25] ZHANG L,WEN B,NIU D T,et al.Damage Evolution of Concrete Under the Actions of Stray Current and Sulphate[J].Journal of Wuhan University of Technology (Materials Science),2021,36(4):578-587.
[26] 王冲,周莹,黄谦.土壤环境中电场与硫酸盐对水泥基材料性能的影响及机理[J].硅酸盐通报,2017,36(9):3057-3063.
[27] 刘成奎,张晨,王建军,等.钢筋混凝土构件在杂散电流和氯盐腐蚀下的疲劳性能及失效规律研究[J].新型建筑材料,2018,45(7):37-40.
[28] 陈梦成,王凯,秦臻,等.多环境腐蚀作用下钢筋混凝土梁疲劳损伤模型[J].铁道学报,2014,36(7):96-100.
[29] 陈梦成,温清清,罗睿,等.地铁工程钢筋混凝土梁疲劳损伤演化和寿命预测模型研究[J].铁道学报,2021,43(1):160-168.
[30] 张二猛.弯曲荷载及杂散电流与腐蚀介质复合作用下地铁混凝土的抗侵蚀性能[D].广州:华南理工大学,2011.
[31] 庄华夏,蔡跃波,陈迅捷,等.杂散电流与硫酸盐耦合作用下混凝土氯离子扩散性能研究[J].混凝土,2020(3):49-53.
[32] WU P,ZHU X J,XU L J,et al.Effect of Stray Current Coupled with Chloride Concentration and Temperature on the Corrosion Resistance of a Steel Passivation Film[J].Electrochemistry Communications,2020,118:106793.
[33] WANG Y L,LIU S X,WANG W D,et al.Influence of Species of Manufactured Sand on Basic Performances of Mortar[J].Advanced Materials Research,2011(306-307):980-983.
[34] 王稷良.机制砂特性对混凝土性能的影响及机理研究[D].武汉:武汉理工大学,2008.
[35] 唐凯靖,刘来宝,周应.岩性对机制砂特性及其混凝土性能的影响[J].混凝土,2011(12):62-63,66.
[36] NEHDI M,MINDESS S,AITCIN P C.Optimization of HighStrength Limestone Filler Cement Mortars[J].Cement and Concrete Research,1996,26(6):883-893.
[37] BONAVETTI V L,IRASSAR E F.The Effect of Stone Dust Content in Sand[J].Cement and Concrete Research,1994,24(3):580-590.
[38] AHMED A E,EL-KOURD A A.Properties of Concrete Incorporating Natural and Crushed Stone Very Fine Sand[J].ACI Materials Journal,1989,86(4):417-424.
[39] 蔡基伟,李北星,周明凯,等.石粉对中低强度机制砂混凝土性能的影响[J].武汉理工大学学报,2006(4):27-30.
[40] 李婷婷,王稷良,郑国荣,等.机制砂中石粉含量对混凝土抗渗性能的影响[J].混凝土,2009(3):35-37.
[41] 黄昌华,杨海成,盛余飞,等.砂岩石粉含量对机制砂混凝土劈裂抗拉强度的影响及机理研究[J].水运工程,2017(9):58-63.
[42] 邹先杰,刘道斌,卢自立,等.机制砂-铜尾矿复合砂商品混凝土性能研究[J].武汉理工大学学报,2014,36(12):27-31.
[43] FENG J C,DONG C Q,CHEN C H,et al.Effect of Manufactured Sand with Different Quality on Chloride Penetration Resistance of High-strength Recycled Concrete[J].Materials,2014,14:7101.
[44] MANE K M,KULKARNI D K,PRAKASH K B.Near-surface and Chloride Permeability of Concrete Using Pozzolanic Materials and Manufactured Sand as Partial Replacement of Fine Aggregate[J].Iranian Journal of Science and Technology-transactions of Civil Engineering,2021(2):1-13.
[45] 夏京亮,高彦鹏,张鹏翔,等.机制砂MB值对混凝土电通量和氯离子扩散系数的影响[J].建筑科学,2021,37(3):78-84.
[46] 李遵云,周玉娟,秦明强,等.凝灰岩机制砂海工混凝土抗氯盐侵蚀耐久性研究[J].硅酸盐通报,2015,34(4):955-959.
[47] 王旭昊,甘珑,余海洋,等.石粉含量对C45凝灰岩机制砂混凝土性能的影响[J].硅酸盐通报,2021,40(3):775-783,820.
[48] 朱毅.机制砂在地铁盾构衬砌管片制作中的应用[J].路基工程,2015(2):171-177.
[49] 杨春常,杨梦然,陈嘉悦.机制砂混凝土在地铁工程中应用的配合比设计及性能研究[J].广东建材,2019,35(4):7-10.