代柱端1,陈 健2,周晓阳1
代柱端,陈健,周晓阳.基于机器学习回归模型的UHPC抗压强度预测研究[J].混凝土与水泥制品,2023(12):23-27,33.
DAI Z D,CHEN J,ZHOU X Y,et al.Compressive strength prediction of UHPC based on machine learning regression model[J].China Concrete and Cement Products,2023(12):23-27,33.
基于机器学习回归模型的UHPC抗压强度预测研究
代柱端1,陈 健2,周晓阳1
代柱端,陈健,周晓阳.基于机器学习回归模型的UHPC抗压强度预测研究[J].混凝土与水泥制品,2023(12):23-27,33.
DAI Z D,CHEN J,ZHOU X Y,et al.Compressive strength prediction of UHPC based on machine learning regression model[J].China Concrete and Cement Products,2023(12):23-27,33.
摘 要:以超高性能混凝土(UHPC)组成原材料中的水泥、矿粉、硅灰、钢纤维、减水剂、消泡剂和水的用量为特征,28 d抗压强度为标签建立了数据集,并采用随机森林回归(RFR)、支持向量机回归(SVR)和多层感知机回归(MLPR)3种机器学习回归模型对数据集进行了训练和预测。结果表明:MLPR模型的拟合优度最高;RFR模型中对UHPC 的28 d抗压强度影响相对较大的3个因素为硅灰、水泥和水的用量;SVR模型和MLPR模型的预测值均落在5%置信区间内,回归效果均较理想。
Abstract: The data set was established with the dosages of cement, mineral powder, silica fume, steel fiber, water reducer, defoamer and water in the constituent raw materials of UHPC as the characteristics, and the 28 d compressive strength as the label, and three machine learning regression models of Random Forest Regression (RFR), Support Vector Machine Regression (SVR) and Multilayer Perceptron Regression(MLPR) were used to train and predict the data set. The results show that the MLPR model has the highest goodness of fit. The three factors in the RFR model that have a relatively large influence on the 28 d compressive strength of UHPC are the dosages of silica fume, cement and water. The predict values of the SVR model and the MLPR model both fall within the 5% confidence interval, and the regression effect of the two models are relatively ideal.
版权所有:中国混凝土与水泥制品网 苏ICP备10086386号 网站建设:中企动力 苏州