苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
负温条件下硅酸盐-铝酸盐-磷酸盐水泥体系水化机理研究
Study on hydration mechanism of silicate-aluminate-phosphate cement system at negative temperature
2023年第12期
混凝土;硅酸盐水泥;铝酸盐水泥;磷酸盐;负温水化;水化机理;微结构
Concrete; Portland cement; Aluminate cement; Phosphate; Negative temperature hydration; Hydration mechanism; Micro-structure
2023年第12期
10.19761/j.1000-4637.2023.12.044.06
余海跃1,隆 锐1,田 波2,李志远2,罗志辉2,李立辉2,*
1.中交一公局第一工程有限公司,北京 100088;2.交通运输部公路科学研究所,北京 100088

余海跃1,隆 锐1,田 波2,李志远2,罗志辉2,李立辉2,*

余海跃,隆锐,田波,等.负温条件下硅酸盐-铝酸盐-磷酸盐水泥体系水化机理研究[J].混凝土与水泥制品,2023(12):44-49.

YU H Y,LONG R,TIAN B,et al.Study on hydration mechanism of silicate-aluminate-phosphate cement system at negative temperature[J].China Concrete and Cement Products,2023(12):44-49.

浏览量:
1000
摘   要:为了研究在-10 ℃环境下硅酸盐-铝酸盐-磷酸盐水泥体系(SAP体系)的水化反应情况,通过凝结时间、XRD、TG、SEM等测试分析了SAP体系的水化产物和反应机理。结果表明:掺入铝酸盐水泥(CAC)和焦磷酸钠均有利于硅酸盐水泥(OPC)的早期凝结,但不利于其后期强度发展;SAP体系早期的主要水化产物为C-S-H凝胶和NO2-AFm晶体,CAC掺量越多,7 d水化产物生成量越多,试件的抗压强度越高;7~28 d时,CAC掺量为10%的S9A1P体系中Ca(OH)2晶体持续生成,试件28 d抗压强度达到32.4 MPa。 Abstract: In order to study the hydration reaction of the silicate-aluminate-phosphate cement system(SAP system) at -10 ℃, the hydration products and reaction mechanism of the SAP system were analyzed through tests such as setting time, XRD, TG, SEM, etc. The results show that The addition of aluminate cement(CAC) and sodium pyrophosphate is beneficial for the early setting of ordinary Portland cement(OPC), but not conducive to its later strength development. In the SAP system, the main early hydration products are C-S-H gel and NO2-AFm crystal. The more CAC is added, the more hydration products are generated at 7 d, and the higher the compressive strength of the specimen is. At 7~28 d, Ca(OH)2 crystals continue to form in the S9A1P system with a CAC content of 10%, and the compressive strength of the specimen reaches 32.4 MPa at 28 d.
英文名 : Study on hydration mechanism of silicate-aluminate-phosphate cement system at negative temperature
刊期 : 2023年第12期
关键词 : 混凝土;硅酸盐水泥;铝酸盐水泥;磷酸盐;负温水化;水化机理;微结构
Key words : Concrete; Portland cement; Aluminate cement; Phosphate; Negative temperature hydration; Hydration mechanism; Micro-structure
刊期 : 2023年第12期
DOI : 10.19761/j.1000-4637.2023.12.044.06
文章编号 :
基金项目 :
作者 : 余海跃1,隆 锐1,田 波2,李志远2,罗志辉2,李立辉2,*
单位 : 1.中交一公局第一工程有限公司,北京 100088;2.交通运输部公路科学研究所,北京 100088

余海跃1,隆 锐1,田 波2,李志远2,罗志辉2,李立辉2,*

余海跃,隆锐,田波,等.负温条件下硅酸盐-铝酸盐-磷酸盐水泥体系水化机理研究[J].混凝土与水泥制品,2023(12):44-49.

YU H Y,LONG R,TIAN B,et al.Study on hydration mechanism of silicate-aluminate-phosphate cement system at negative temperature[J].China Concrete and Cement Products,2023(12):44-49.

摘要
参数
结论
参考文献
引用本文

摘   要:为了研究在-10 ℃环境下硅酸盐-铝酸盐-磷酸盐水泥体系(SAP体系)的水化反应情况,通过凝结时间、XRD、TG、SEM等测试分析了SAP体系的水化产物和反应机理。结果表明:掺入铝酸盐水泥(CAC)和焦磷酸钠均有利于硅酸盐水泥(OPC)的早期凝结,但不利于其后期强度发展;SAP体系早期的主要水化产物为C-S-H凝胶和NO2-AFm晶体,CAC掺量越多,7 d水化产物生成量越多,试件的抗压强度越高;7~28 d时,CAC掺量为10%的S9A1P体系中Ca(OH)2晶体持续生成,试件28 d抗压强度达到32.4 MPa。

Abstract: In order to study the hydration reaction of the silicate-aluminate-phosphate cement system(SAP system) at -10 ℃, the hydration products and reaction mechanism of the SAP system were analyzed through tests such as setting time, XRD, TG, SEM, etc. The results show that The addition of aluminate cement(CAC) and sodium pyrophosphate is beneficial for the early setting of ordinary Portland cement(OPC), but not conducive to its later strength development. In the SAP system, the main early hydration products are C-S-H gel and NO2-AFm crystal. The more CAC is added, the more hydration products are generated at 7 d, and the higher the compressive strength of the specimen is. At 7~28 d, Ca(OH)2 crystals continue to form in the S9A1P system with a CAC content of 10%, and the compressive strength of the specimen reaches 32.4 MPa at 28 d.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)-10 ℃环境下,随着CAC掺入比例和焦磷酸钠掺量的增加,SAP体系的凝结时间缩短,且初凝和终凝的时间间隔也缩短。掺入CAC和焦磷酸钠可以提高SAP体系的早期抗压强度,但对后期抗压强度的发展不利,CAC的掺入比例越高,SAP体系3 d内的抗压强度越高,但后期抗压强度较低。
(2)仅S9A1P体系在水化过程中生成了Ca(OH)2,其他SAP体系仅发现NO2-AFm晶体和C-S-H凝胶的生成;掺入CAC和磷酸盐均有利于早期SAP体系水化产物的生成,但对后期水化产物的生成起抑制作用。
(3)S9A1P1体系中Ca(OH)2晶体在7~28 d内持续生成,Ca(OH)2晶体穿插于C-S-H凝胶和堆叠的NO2-AFm晶体间形成了紧密的微观结构,为后期抗压强度增长做出贡献。S8A2P1和S7A3P1体系7 d内均只有C-S-H凝胶和NO2-AFm晶体生成;7~28 d时,S8A2P1体系中NO2-AFm晶体不断生成,而S7A3P1体系中的水化产物生成陷入停滞;NO2-AFm晶体的层状堆叠为S8A2P1和S7A3P1体系提供了一定的早期抗压强度,但后期抗压强度增长有限。

[1] LI X,CHENG G D,JIN H J,et al.Cryospheric change in China[J].Global and Planetary Change,2008,62(3-4):210-218.
[2] 周幼吾.中国冻土[M].北京:科学出版社,2000.
[3] WANG X X,LIU C,LIU S G,et al.Compressive strength of pile foundation concrete in permafrost environment in China[J]. Construction and Building Materials,2020,247(7):1-8.
[4] 胡玉兵,苗广营,熊羽.负温环境下混凝土力学性能及水化特征研究[J].建筑材料学报,2017,20(6):975-980.
[5] LIU J,LI Y,OUYANG P,et al.Hydration of the silica fume-Portland cement binary system at lower temperature[J].Construction and Building Materials,2015,93(9):919-925.
[6] DEMIRBOGA R,KARAGOL F,POLAT R,et al.The effects of urea on strength gaining of fresh concrete under the cold weather conditions[J].Construction and Building Materials,2014, 64(8):114-120.
[7] 王稷良,孙小彬,杨志峰.防冻组分对水泥混凝土性能的影响研究[J].硅酸盐通报,2014,33(12):3331-3337.
[8] KARAGOEL F,DEMIRBOGA R,KAYGUSUZ M A,et al.The influence of calcium nitrate as antifreeze admixture on the compressive strength of concrete exposed to low temperatures[J]. Cold Regions Science and Technology,2013,89(5):30-35.
[9] GU P,FU Y,BEAUDOIN J J.A study of the hydration and setting behaviour of OPC-HAC pastes[J].Cement and Concrete Research,1995,25(1):221-222.
[10] ZHANG X,YANG Y,ONG C K.Study of early hydration of OPC-HAC blends by microwave and calorimetry technique[J]. Cement and Concrete Research,1997,27(9):1419-1428.
[11] 王培铭,孙磊,徐玲琳,等.硅酸盐水泥与铝酸盐水泥混合体系的研究和应用[J].材料导报,2013,27(1):139-143.
[12] 王培铭,徐玲琳,张国防.0~20 ℃养护下硅酸盐水泥水化时钙矾石的生成及转变[J].硅酸盐学报,2012,40(5):646-650.
[13] LOTHENBACH B,WINNEFELD F,ALDER C.Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes[J].Cement and Concrete Research,2007,37(4):483-491.
[14] 徐玲琳,王培铭,吴广明,等.铝酸盐水泥对硅酸盐水泥性能及浆体结构的影响[J].同济大学学报(自然科学版),2015,43(5):736-740,753.
[15] GARCIA-LODEIRO I,IRISAWA K,JIN F Y,et al.Reduction of water content in calcium aluminate cement with/out phosphate modification for alternative cementation technique[J].Cement and Concrete Research,2018,109:243-253.
[16] BALONIS M,MEDALA M,GLASSER F P.Influence of calcium nitrate and nitrite on the constitution of AFm and AFt cement hydrates[J].Advances in Cement Research,2011,23(3):129-143.
[17] GU P,BEAUDOIN J J,QUINN E G,et al.Early strength development and hydration of ordinary Portland cement/calcium aluminate cement pastes[J].Advanced Cement Based Materials, 1997,6(2):53-58.
[18] 徐玲琳,李楠,王培铭,等.温度对铝酸盐水泥基三元体系早期水化的影响[J].硅酸盐学报,2016,44(11):1552-1557.
[19] RAMACHANDRAN V S,HABER R M,BEAUDOIN J J,et al.Handbook of thermal analysis of construction materials[M]. New York:William Andrew,2002.
[20] YUM W S,SUH J I,KIM D H,et al.Prevention of potential strength degradation due to conversion of C2AH8 formed in CaO-Ca(HCOO)2-activated GGBFS binder using CaSO4[J].Construction and Building Materials,2020,253(8):1-9.

余海跃,隆锐,田波,.负温条件下硅酸盐-铝酸盐-磷酸盐水泥体系水化机理研究[J].混凝土与水泥制品,2023(12):44-49.

YU H Y,LONG R,TIAN B,et al.Study on hydration mechanism of silicate-aluminate-phosphate cement system at negative temperature[J].China Concrete and Cement Products,2023(12):44-49.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州