苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
利用DOE和紧密堆积理论优化UHPC设计
Optimized design of UHPC based on DOE and MAA
2024年第3期
配合比设计;Andreasen-Andersen模型;试验设计;响应面分析法;超高性能混凝土
Mix proportion design; Andreasen-Andersen model; Design of experiment; Response surface methodology; Ultra-high performance concrete(UHPC)
2024年第3期
10.19761/j.1000-4637.2024.03.001.06
李火星,孔祥付,李伯川,胡 建
筑友智造建设科技集团有限公司,湖南 长沙 410005

李火星,孔祥付,李伯川,胡 建

李火星,孔祥付,李伯川,等.利用DOE和紧密堆积理论优化UHPC设计[J].混凝土与水泥制品,2024(3):1-6.

LI H X,KONG X F,LI B C,et al.Optimized design of UHPC based on DOE and MAA[J].China Concrete and Cement Products,2024(3):1-6.

浏览量:
1000
摘   要:使用DOE设计理论,根据所选原材料的性能和产品工艺要求先设定基础参数和优化目标,再基于颗粒紧密堆积理论(MAA)得到标准预混料的配合比;然后利用全因子试验筛选重要因子并确定极值范围后进行响应面模型分析;最后输出得到符合使用要求的超高性能混凝土(UHPC)配合比。验证试验结果表明:优化配合比后,所配制的UHPC流动度和密实度预测值均在误差范围内,结果较可靠。 Abstract: Adopting DOE design theory, firstly, the basic parameters and optimization objectives were set according to the selected raw material properties and product process requirements. Then the mix proportion of standard premix was obtained based on the theory of compact accumulation of particles(MAA), and the response surface model analysis was carried out by using the full factorial test to screen the important factors and to determine the range of extremes, and the output was obtained to obtain the mix proportion of ultra-high performance concrete(UHPC) that meet the requirements for use. The verification test results show that the predicted values of flowability and compactness of UHPC prepared by optimizing the mix proportion are within the error range, and the results are relatively reliable.
英文名 : Optimized design of UHPC based on DOE and MAA
刊期 : 2024年第3期
关键词 : 配合比设计;Andreasen-Andersen模型;试验设计;响应面分析法;超高性能混凝土
Key words : Mix proportion design; Andreasen-Andersen model; Design of experiment; Response surface methodology; Ultra-high performance concrete(UHPC)
刊期 : 2024年第3期
DOI : 10.19761/j.1000-4637.2024.03.001.06
文章编号 :
基金项目 :
作者 : 李火星,孔祥付,李伯川,胡 建
单位 : 筑友智造建设科技集团有限公司,湖南 长沙 410005

李火星,孔祥付,李伯川,胡 建

李火星,孔祥付,李伯川,等.利用DOE和紧密堆积理论优化UHPC设计[J].混凝土与水泥制品,2024(3):1-6.

LI H X,KONG X F,LI B C,et al.Optimized design of UHPC based on DOE and MAA[J].China Concrete and Cement Products,2024(3):1-6.

摘要
参数
结论
参考文献
引用本文

摘   要:使用DOE设计理论,根据所选原材料的性能和产品工艺要求先设定基础参数和优化目标,再基于颗粒紧密堆积理论(MAA)得到标准预混料的配合比;然后利用全因子试验筛选重要因子并确定极值范围后进行响应面模型分析;最后输出得到符合使用要求的超高性能混凝土(UHPC)配合比。验证试验结果表明:优化配合比后,所配制的UHPC流动度和密实度预测值均在误差范围内,结果较可靠。

Abstract: Adopting DOE design theory, firstly, the basic parameters and optimization objectives were set according to the selected raw material properties and product process requirements. Then the mix proportion of standard premix was obtained based on the theory of compact accumulation of particles(MAA), and the response surface model analysis was carried out by using the full factorial test to screen the important factors and to determine the range of extremes, and the output was obtained to obtain the mix proportion of ultra-high performance concrete(UHPC) that meet the requirements for use. The verification test results show that the predicted values of flowability and compactness of UHPC prepared by optimizing the mix proportion are within the error range, and the results are relatively reliable.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)UHPC配合比设计涉及多个变量和目标。本文以常用的MAA为基础,通过合理优化设计因子,依据UHPC设计性能要求选择响应变量,获得的模型预测结果均在95%置信区间内,有较好可靠性。
(2)本文UHPC配合比设计方法能以较少的试验次数、较短的周期、较低的试验成本获得较理想的试验结果。完善的试验设计和数理分析工具可以化繁为简,能对每个因素及其交互作用影响进行量化。通过析因试验找到并确定极值窄区间后,再进行较精确的响应面分析,最大程度避免了人为经验取值带来的误差影响,故适合做标准化应用推广。
(3)UHPC中,硅粉的使用对聚羧酸减水剂提出了更高要求,需要重视两者之间的适应性问题。此外,减水剂掺量的变化容易导致部分试验组发生离析现象,可以考虑通过前期试配筛选最佳掺量,将减水剂掺量变为胶材的固定掺量。

[1] SHARIFI E,SADJADI S J,ALIHA M R M,et al.Optimization of high-strength self-consolidating concrete mix design using an improved Taguchi optimization method[J].Construction and Building Materials,2020,236(3):1-12.
[2] SADROSSADAT E,BASARIR H,DARRNCH A,et al.Multi-objective mixture design and optimisation of steel fiber reinforced UHPC using machine learning algorithms and metaheuristics[J].Engineering with Computers,2022,38(3):2569-2582. 
[3] FAN D Q,YU R,FU S Y,et al.Precise design and characteristics prediction of ultra-high performance concrete (UHPC) based on artificial intelligence techniques[J].Cement and Concrete Composites,2021,122:1-17.
[4] ZHOU M,WU Z M,OUYANG X,et al.Mixture design methods for ultra-high-performance concrete - A review[J].Cement and Concrete Composites,2021,124:1-21.
[5] FURNAS C C.Grading aggregates:I-mathematical relations for beds of broken solids of maximum density[J].Industrial and Engineering Chemistry Research,1931,23(9):1052-1058.

[6] STOVALL T,LARRARD F D,BUIL M.Linear packing density model grain mixtures[J].Powder Technology,1986,48(1):1-12. 
[7] POMEROY C.D.Properties of fresh concrete[J].Materials and Structures,1991,24(2):159-160.
[8] AIM R B,LE-GOFF P.Effet de paroi dans les empilements désordonnes de sphcrès et application ?觓 la porosité de mélanges binaires[J].Powder Technology,1968,1(5):281-290. 
[9] ROY D M,SCHEETZ B E,SILSBEE M R.Processing of optimized cements and concretes via particle packing[J].MRS Bulletin,1993,18(3):45-49. 
[10] GOLTERMANN P,JOHANSEN V,PALBOL L.Packing of aggregates: an alternative tool to determine the optimal aggregate mix[J].ACI Materials Journal,1997,94(5):435-443.
[11] YU A B,ZOU R P,STANDISH N.Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures[J].Industrial and Engineering Chemistry Research,1996,35(10):3730-3741. 
[12] LARRARD F D,SEDRAN T.Mixture-proportioning of high-performance concrete[J].Cement and Concrete Research,2002, 32(11):1699-1704. 
[13] FULLER W B,THOMPSON S E.The laws of proportioning concrete[J].Transactions of the American Society of Civil Engineers,1907,1:12.
[14] SAHMENKO G,BIRSH J.Concrete mix design and optimization[C]//International Civil Engineering Association.The 2nd Symposium in Civil Engineering.Budapest:Civil Engineering Association,1998:3-9.
[15] LI L G,KWAN A K H.Effects of superplasticizer type on packing density, water film thickness and flowability of cementitious paste[J].Construction and Building Materials,2015,86(1):113-119. 
[16] SHI C J,JIAO D W,ZHANG J,et al.Method for mixture design of concrete with multiple performance requirements[J].Construction and Building Materials,2018,165(3):825-832. 
[17] WANG R,GAO X J,HUANG H H,et al.Influence of rheological properties of cement mortar on steel fiber distribution in UHPC[J].Construction and Building Materials,2017,144(7):65-73. 
[18] MEHDIPOUR I,KHAYAT K H.Effect of particle-size distribution and specific surface area of different binder systems on packing density and flow characteristics of cement paste[J].Cement and Concrete Composites,2017,78:120-131.
[19] WU Q,AN X H.Development of a mix design method for SCC based on the rheological characteristics of paste[J].Construction and Building Materials,2014,53:642-651. 
[20] MENG W H,VALIPOUR M,KHAYAT K H.Optimization and performance of cost-effective ultra-high performance concrete[J].Materials and Structures,2017,50(1):1-16. 
[21] QU D,CAI X,CHANG W.Evaluating the effects of steel fibers on mechanical properties of ultra-high performance concrete using artificial neural networks[J].Applied Sciences,2018,8(7): 1-20.
[22] 袁志发,贠海燕.试验设计与分析[M].北京:中国农业出版社,2002.
[23] BROUWERS H J H,RADIX H J.Self-compacting concrete: theoretical and experimental study[J].Cement and Concrete Research,2005,35(11):2116-2136. 
[24] 中华人民共和国住房和城乡建设部.普通混凝土配合比设计规程:JGJ 55—2011[S].北京:中国建筑工业出版社,2011.
[25] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.水泥密度测定方法:GB/T 208—2014[S].北京:中国标准出版社,2014.
[26] 中华人民共和国建设部.普通混凝土用砂、石质量及检验方法标准:JGJ 52—2006[S].北京:中国建筑工业出版社,2007.
[27] 中华人民共和国国家质量监督检验检验总局,中国国家标准化管理委员会.水泥胶砂流动度测定方法:GB/T 2419—2005[S].北京:中国标准出版社,2005.
[28] SNEHAL K,DAS B B.Application of Andreassen and modified Andreassen model on cementitious mixture design: a review[J].Recent Developments in Sustainable Infrastructure,2021(7):729-750. 
[29] GUPTA H.Development and property assessment of high performance hybrid fiber reinforced concrete[D].Patiala,Punjab:Thapar Institute of Engineering and Technology,2018. 
[30] DE-LARRARD F.Concrete mixture proportioning: a scientific approach[M].Boca Raton:CRC Press,1999.
[31] WONG V,KWANA K H.A 3-parameter model for packing density prediction of ternary mixes of spherical particles[J]. Powder Technology,2014,268:357-367.
[32] 赵一鹤,孙振平,穆帆远,等.钢纤维对UHPC拉伸性能及其拔出行为的影响[J].建筑材料学报,2021,24(2):276-282. 
[33] RANADE R,STULTS M D,LI V C,et al.Development of high strength high ductility concrete[C]//RILEM.The Second International Conference on Strain Hardening Cement.Rio de Janeiro:RILEM,2013:375-384.
[34] LI L G,KWAN A K H.Packing density of concrete mix under dry and wet conditions[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2014,253:514-521. 
[35] LIU C W,ZHANG C R,ZHOU C R,et al.Effects of the solidification of capillary bridges on the interaction forces between hydrate particles[J].Energy and Fuels,2020,34(4):4525-4533.

李火星,孔祥付,李伯川,.利用DOE和紧密堆积理论优化UHPC设计[J].混凝土与水泥制品,2024(3):1-6.

LI H X,KONG X F,LI B C,et al.Optimized design of UHPC based on DOE and MAA[J].China Concrete and Cement Products,2024(3):1-6.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州