苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
基于非接触电阻率测量法的水泥基材料早期水化特性研究
Study on early hydration characteristics of cement-based materials based on non-contact resistivity measurement
2024年第3期
水泥基材料;硅灰;粉煤灰;非接触电阻率测量法;水化
Cement-based material; Silica fume; Fly ash; Non-contact resistivity measurement; Hydration
2024年第3期
10.19761/j.1000-4637.2024.03.021.05
高性能土木工程材料国家重点实验室开放基金项目(2022CEM005)。
于超胜
中铁十一局集团第四工程有限公司,湖北 武汉,430074

于超胜

于超胜.基于非接触电阻率测量法的水泥基材料早期水化特性研究[J].混凝土与水泥制品,2024(3):21-25.

YU C S.Study on early hydration characteristics of cement-based materials based on non-contact resistivity measurement[J].China Concrete and Cement Products,2024(3):2024(3):21-25.

浏览量:
1000
摘   要:采用非接触电阻率测量法,基于电阻率与温差曲线,研究了硅灰掺量(5%、10%)和粉煤灰掺量(20%、40%)对水泥基材料早期水化的影响。结果表明:掺粉煤灰组水泥浆体的电阻率在约580 min前高于C组(基准组),在580 min后低于C组,而掺硅灰组水泥浆体正相反,在580 min后,掺硅灰组水泥浆体的电阻率高于C组;与C组相比,掺入粉煤灰后,水泥浆体的放热量减少,放热峰对应的时间延迟,而掺入硅灰后,水泥浆体的水化反应明显加快,放热峰对应的时间也随着硅灰掺量的增加而提前;相比于C组,掺粉煤灰组水泥浆体的凝结时间略微延长,掺硅灰组水泥浆体的凝结时间缩短;相较于掺入粉煤灰,掺入硅灰可以促进水泥水化,使水泥浆体微观结构更加致密。 Abstract: The influence of silica fume content(5%, 10%) and fly ash content(20%, 40%) on early hydration of cement-based materials was studied by combining non-contact resistivity measurement based on resistivity and temperature difference curves. The results show that the electrical resistivity of the cement slurry mixed with fly ash is higher than that of group C (benchmark group) before about 580 min, and lower than that of group C after 580 min, while the electrical resistivity of the cement slurry mixed with silica fume is the opposite. After 580 min, the electrical resistivity of the cement slurry mixed with silica fume is higher than that of group C. Compared with group C, the addition of fly ash reduces the heat release of the cement slurry and delays the time corresponding to the heat release peak. However, the addition of silica fume significantly accelerates the hydration reaction of the cement slurry, and the time corresponding to the heat release peak also advances with the increase of silica fume content. Compared to group C, the setting time of the cement slurry in the fly ash group is slightly longer, while the setting time of the cement slurry in the silica ash group is shorter. Compared to adding fly ash, adding silica fume can promote cement hydration and make the microstructure of cement slurry more compact.
英文名 : Study on early hydration characteristics of cement-based materials based on non-contact resistivity measurement
刊期 : 2024年第3期
关键词 : 水泥基材料;硅灰;粉煤灰;非接触电阻率测量法;水化
Key words : Cement-based material; Silica fume; Fly ash; Non-contact resistivity measurement; Hydration
刊期 : 2024年第3期
DOI : 10.19761/j.1000-4637.2024.03.021.05
文章编号 :
基金项目 : 高性能土木工程材料国家重点实验室开放基金项目(2022CEM005)。
作者 : 于超胜
单位 : 中铁十一局集团第四工程有限公司,湖北 武汉,430074

于超胜

于超胜.基于非接触电阻率测量法的水泥基材料早期水化特性研究[J].混凝土与水泥制品,2024(3):21-25.

YU C S.Study on early hydration characteristics of cement-based materials based on non-contact resistivity measurement[J].China Concrete and Cement Products,2024(3):2024(3):21-25.

摘要
参数
结论
参考文献
引用本文

摘   要:采用非接触电阻率测量法,基于电阻率与温差曲线,研究了硅灰掺量(5%、10%)和粉煤灰掺量(20%、40%)对水泥基材料早期水化的影响。结果表明:掺粉煤灰组水泥浆体的电阻率在约580 min前高于C组(基准组),在580 min后低于C组,而掺硅灰组水泥浆体正相反,在580 min后,掺硅灰组水泥浆体的电阻率高于C组;与C组相比,掺入粉煤灰后,水泥浆体的放热量减少,放热峰对应的时间延迟,而掺入硅灰后,水泥浆体的水化反应明显加快,放热峰对应的时间也随着硅灰掺量的增加而提前;相比于C组,掺粉煤灰组水泥浆体的凝结时间略微延长,掺硅灰组水泥浆体的凝结时间缩短;相较于掺入粉煤灰,掺入硅灰可以促进水泥水化,使水泥浆体微观结构更加致密。

Abstract: The influence of silica fume content(5%, 10%) and fly ash content(20%, 40%) on early hydration of cement-based materials was studied by combining non-contact resistivity measurement based on resistivity and temperature difference curves. The results show that the electrical resistivity of the cement slurry mixed with fly ash is higher than that of group C (benchmark group) before about 580 min, and lower than that of group C after 580 min, while the electrical resistivity of the cement slurry mixed with silica fume is the opposite. After 580 min, the electrical resistivity of the cement slurry mixed with silica fume is higher than that of group C. Compared with group C, the addition of fly ash reduces the heat release of the cement slurry and delays the time corresponding to the heat release peak. However, the addition of silica fume significantly accelerates the hydration reaction of the cement slurry, and the time corresponding to the heat release peak also advances with the increase of silica fume content. Compared to group C, the setting time of the cement slurry in the fly ash group is slightly longer, while the setting time of the cement slurry in the silica ash group is shorter. Compared to adding fly ash, adding silica fume can promote cement hydration and make the microstructure of cement slurry more compact.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)通过非接触电阻率测量法分析了掺不同矿物掺合料的水泥基材料早期电阻率的变化与水化程度的关系,掺粉煤灰组水泥浆体的电阻率在约580 min前高于C组,在580 min后低于C组,而掺硅灰组水泥浆体正相反,在580 min后,掺硅灰的水泥浆体电阻率高于C组。
(2)与C组相比,掺入粉煤灰后,水泥浆体的放热量减少,放热峰对应的时间延迟,而掺入硅灰,水泥浆体的水化反应明显加快,放热峰对应的时间也随着硅灰掺量的增加而提前。相比于C组,掺粉煤灰组水泥浆体的凝结时间略微延长,掺硅灰组水泥浆体的凝结时间缩短。
(3)相较于掺入粉煤灰,掺入硅灰可以促进水泥水化,使水泥浆体微观结构更加致密。
 

[1] LIAO Y S,WEI X S.Early hydration of calcium sulfoaluminate cement through electrical resistivity measurement and microstructure investigations[J].Construction and Building Materials,2011,25:1572-1579.
[2] ZUO Y B,ZI J M,WEI X S.Hydration of cement with retarder characterized via electrical resistivity measurements and computer simulation[J].Construction and Building Materials,2014,53:411-418.
[3] MABROUK R,ISHIDA T,MAEKAWA K.A unified solidification model of hardening concrete composite for predicting the young age behavior of concrete[J].CementConcrete Composites,2004,26(5):453-461. 
[4] VAN B K.Numerical modeling of volume changes at early ages-potential, pitfalls and challenges[J].Materials and Structures,2001,34(5):293-301. 
[5] LOKHORST S J,VAN B K.Simulation of the effect of geometrical changes of the microstructure on the deformational behavior of hardening concrete[J].Cement and Concrete Research,1997,27(10):1465-1479.
[6] 李巧玲,韩唯伟,刘数华.大掺量矿渣粉-水泥基复合胶凝材料的蒸养强度与水化特性[J].粉煤灰,2016,28(3):11-15.
[7] 刘数华.石灰石粉对复合胶凝材料水化特性的影响[J].建筑材料学报,2010,13(2):218-221,242.
[8] BANTHEA N,DJERIDANE S,PIGEON M.Electrical resistivity of carbon and steel micro-fiber reinforced cement[J].Cement and Concrete Research,1992,22(5):804-814. 
[9] TUMIDAJSKI P J,SCHUMACHER A S,PERRON,et al.On the relationship between porosity and electrical resistivity in cementitious system[J].Cement and Concrete Research,1996,26(4):539-544. 
[10] EI-EIN S A,KOTKATA M F,HANNA G B,et al.Electrical conductivity of concrete containing silica fume[J].Cement and Concrete Research,1995,25(8):1615-1622. 
[11] HANSSON I L H.Electrical resistivity measurements of portland cement-based materials[J].Cement and Concrete Research,1983,13(5):675-683. 
[12] HE Z,SUN H Y,LUO Q,et al.Investigation on relationship between fabric and hydration behavior with combined resistivity-heat release method[C]//Chinese Ceramic Society.Proceedings of the First International Conference on Microstructure Related Durability of Cementitious Composites.Nanjing:Chinese Ceramic Society,2006:273-282.
[13] 王赟程,刘志勇,张云升,等.非接触电阻率法在水泥基材料上的应用进展[J].硅酸盐学报,2020,48(4):533-542. 
[14] CALLEJA J.New techniques in the Study of setting and hardening of hydraulic materials[J].Journal Proceedings,1952,48(3):525-536.
[15] CALLEJA J.Determination of setting and hardening time of high-alumina cements by electrical resistance techniques[J].Journal Proceedings,1953,50(11):249-256.
[16] TAMAS F D.Electrical conductivity of cement pastes[J].Cement and Concrete Research,1982,12(1):115-120.
[17] ABD E W M G,HELMY I M,EL D H,et al.Effect of admixtures on the electrical behaviour of portland cement[J].Journal of Materials Science Letters,1993,12(1):40-42.
[18] TORRENTS J M,RONCERO J,GRTTU R.Utilization of impedance spectroscopy for studying the retarding effect of a superplasticizer on the setting of cement[J].Cement and Concrete Research,1998,28(9):884698.
[19] PAYA J,BORRACHERO M V,MONZO J,et al.Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity[J].Cement and Concrete Research,2001,31(1):004348. 
[20] WHITTINGTON H W,MCCARTER J,FORDE M C.The conduction of electricity through concrete[J].Magazine of Concrete Research,1981,33(114):0043408. 
[21] XIE P,BEAUDOIN J J,BROUSSEAU R.Flat aggregate-portland cement paste interfaces, electrical conductivity models[J].Cement and Concrete Research,1991,21(4):515-522.
[22] BEAUDOIN J J,BROUSSEAU R.Effect of aggregate size on transition zone properties at the portland cement paste interface[J].Cement and Concrete Research,1991,21(6):999-1005.
[23] SHEN Y,XU Z Z,XIE P,et al.A new method of enhancing cement-aggregate interfaces, ideal aggregate and its effects on interfacial microstructures[J].Cement and Concrete Research,1992,22(4):999-1005.
[24] 肖莲珍,李宗津,魏小胜.用电阻率法研究新拌混凝土的早期凝结和硬化[J].硅酸盐学报,2005,33(10):1271-1275.
[25] LI Z J.Electrodeless resistivity measurement for concrete specimen:USSN 09/907.817[P].2002-04-05.
 

于超胜.基于非接触电阻率测量法的水泥基材料早期水化特性研究[J].混凝土与水泥制品,2024(3):21-25.

YU C S.Study on early hydration characteristics of cement-based materials based on non-contact resistivity measurement[J].China Concrete and Cement Products,2024(3):2024(3):21-25.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州