苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
PCCP外层防护用复合材料的力学性能研究
Research on mechanical properties of composite materials for PCCP outer layer protection
2024年第6期
高延性;地质聚合物;前驱体;纤维-基体界面;力学性能
High ductility; Geopolymer; Precusor; Fiber-matrix interface; Mechanical property
2024年第6期
10.19761/j.1000-4637.2024.06.043.08
国家自然科学基金面上项目(52178191)。
杜智荣1,侯 宇1,吕邦成1,芮子庆1,陈海涛1,郭丽萍1,2,*,刘益萌3,刘 强4
1.东南大学 材料科学与工程学院,江苏 南京 211189;2.江苏省土木工程材料重点实验室, 江苏 南京 211189;3.福建祥睿建设发展有限公司,福建 厦门 361000;4.福建省兴岩建设集团 有限公司,福建 漳州 363900

杜智荣1,侯 宇1,吕邦成1,芮子庆1,陈海涛1,郭丽萍1,2,*,刘益萌3,刘 强4

杜智荣,侯宇,吕邦成,等.PCCP外层防护用复合材料的力学性能研究[J].混凝土与水泥制品,2024(6):43-50.

DU Z R,HOU Y,LYU B C,et al.Research on mechanical properties of composite materials for PCCP outer layer protection[J].China Concrete and Cement Products,2024(6):43-50.

浏览量:
1000
摘   要:基于预应力钢筒混凝土管(PCCP)外层防护水泥砂浆受拉易裂的问题及消纳大宗工业固废和降低水泥碳排放的目的,以赤泥、粉煤灰和矿渣全取代水泥,制备得到了满足低碳及拉伸变形需求的全固废基高延性地质聚合物复合材料(High Ductility Geopolymer Composites, HDGC)。通过改变前驱体相对含量,探究了HDGC的宏观和细观力学性能、微观形貌及应变硬化能力。结果表明:HDGC的抗压强度随赤泥掺量的增加而减小,随矿渣掺量的增加而增强,但抗拉强度与弯曲强度随矿渣掺量的增加先增大再减小;矿渣掺量为20%的HDGC抗压强度不低于45 MPa,抗拉强度与拉伸应变分别大于4 MPa和4%;HDGC细观力学参数均随矿渣掺量的增加而增大,其强度指数和能量指数高于推荐阈值,拉伸应变硬化能力显著。 Abstract: In addressing the issue of the cracking susceptibility of cement mortar in the outer layer of prestressed steel cylindrical concrete pipes (PCCP), and with the goal of utilizing bulk industrial solid waste and reducing cement carbon emissions, the High Ductility Geopolymer Composites (HDGC) based on solid waste was prepared by replacing cement with red mud, fly ash, and slag to meet the requirements of low-carbon and tensile deformation. The mechanical properties, microscopic morphology, and strain-hardening capacity of HDGC were investigated by varying the relative content of precursors. The results show that the compressive strength of HDGC decreases with the increase of red mud content and enhances with the increase of slag content, but the tensile strength and bending strength first increase and then decrease with the increase of slag content. The compressive strength of HDGC with 20% slag content exceeds 45 MPa, whose tensile strength and strains exceed 4 MPa and 4% respectively. The micro mechanical parameters of HDGC increase with the increase of slag content, and their strength index and energy index are higher than the recommended threshold, and the tensile strain hardening ability is significant.
英文名 : Research on mechanical properties of composite materials for PCCP outer layer protection
刊期 : 2024年第6期
关键词 : 高延性;地质聚合物;前驱体;纤维-基体界面;力学性能
Key words : High ductility; Geopolymer; Precusor; Fiber-matrix interface; Mechanical property
刊期 : 2024年第6期
DOI : 10.19761/j.1000-4637.2024.06.043.08
文章编号 :
基金项目 : 国家自然科学基金面上项目(52178191)。
作者 : 杜智荣1,侯 宇1,吕邦成1,芮子庆1,陈海涛1,郭丽萍1,2,*,刘益萌3,刘 强4
单位 : 1.东南大学 材料科学与工程学院,江苏 南京 211189;2.江苏省土木工程材料重点实验室, 江苏 南京 211189;3.福建祥睿建设发展有限公司,福建 厦门 361000;4.福建省兴岩建设集团 有限公司,福建 漳州 363900

杜智荣1,侯 宇1,吕邦成1,芮子庆1,陈海涛1,郭丽萍1,2,*,刘益萌3,刘 强4

杜智荣,侯宇,吕邦成,等.PCCP外层防护用复合材料的力学性能研究[J].混凝土与水泥制品,2024(6):43-50.

DU Z R,HOU Y,LYU B C,et al.Research on mechanical properties of composite materials for PCCP outer layer protection[J].China Concrete and Cement Products,2024(6):43-50.

摘要
参数
结论
参考文献
引用本文

摘   要:基于预应力钢筒混凝土管(PCCP)外层防护水泥砂浆受拉易裂的问题及消纳大宗工业固废和降低水泥碳排放的目的,以赤泥、粉煤灰和矿渣全取代水泥,制备得到了满足低碳及拉伸变形需求的全固废基高延性地质聚合物复合材料(High Ductility Geopolymer Composites, HDGC)。通过改变前驱体相对含量,探究了HDGC的宏观和细观力学性能、微观形貌及应变硬化能力。结果表明:HDGC的抗压强度随赤泥掺量的增加而减小,随矿渣掺量的增加而增强,但抗拉强度与弯曲强度随矿渣掺量的增加先增大再减小;矿渣掺量为20%的HDGC抗压强度不低于45 MPa,抗拉强度与拉伸应变分别大于4 MPa和4%;HDGC细观力学参数均随矿渣掺量的增加而增大,其强度指数和能量指数高于推荐阈值,拉伸应变硬化能力显著。

Abstract: In addressing the issue of the cracking susceptibility of cement mortar in the outer layer of prestressed steel cylindrical concrete pipes (PCCP), and with the goal of utilizing bulk industrial solid waste and reducing cement carbon emissions, the High Ductility Geopolymer Composites (HDGC) based on solid waste was prepared by replacing cement with red mud, fly ash, and slag to meet the requirements of low-carbon and tensile deformation. The mechanical properties, microscopic morphology, and strain-hardening capacity of HDGC were investigated by varying the relative content of precursors. The results show that the compressive strength of HDGC decreases with the increase of red mud content and enhances with the increase of slag content, but the tensile strength and bending strength first increase and then decrease with the increase of slag content. The compressive strength of HDGC with 20% slag content exceeds 45 MPa, whose tensile strength and strains exceed 4 MPa and 4% respectively. The micro mechanical parameters of HDGC increase with the increase of slag content, and their strength index and energy index are higher than the recommended threshold, and the tensile strain hardening ability is significant.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)采用赤泥-粉煤灰体系,HDGC的抗压强度为25.0~55.0 MPa,抗拉强度为3.2~3.7 MPa,拉伸应变为1.6%~5.0%。随着赤泥掺量从20%增至60%,HDGC的抗压强度降低,拉伸延性增加。
(2)采用赤泥-矿渣-粉煤灰体系,HDGC的抗压强度为38.0~63.0 MPa,抗拉强度为3.0~4.4 MPa,拉伸应变为2.4%~4.3%,裂缝宽度集中在50~70 μm。随着矿渣掺量的增加,抗压强度提高,拉伸应变降低,抗拉强度先增高后降低;在弯曲荷载和拉伸荷载作用下,HDGC的力学性能变化规律相似;随着Ca/Si的增大,产物中的Ca(OH)2在一定程度上促进了抗拉强度与弯曲强度的降低。
(3)随着矿渣掺量的增加,纤维-基体界面间的相互作用随之增大,化学结合能、界面摩擦强度和滑移硬化系数则呈上升趋势,HDGC应变硬化明显。
(4)采用赤泥、矿渣、粉煤灰等大宗工业固废制备的HDGC具有优异的力学性能,可用于PCCP外层防护,在延长管道服役寿命的同时,可实现赤泥的高效利用和工业固废资源化利用。

[1] 王建慧,陈晨,张海鹏,等.预应力钢筒混凝土管在水工结构中的应用[J].水利发展研究,2018,18(10):46-49,69.
[2] 余洪方.PCCP管产品质量及管道工程耐久性和安全性的必要措施探讨[J].混凝土与水泥制品,2011(9):28-30.
[3] 江世永,龚宏伟,姚未来,等.ECC材料力学性能与本构关系研究进展[J].材料导报,2018,32(23):4192-4204.
[4] LI V C,LEUNG C K Y.Steady-state and multiple cracking of short random fiber composites [J].Journal of Engineering Mechanics,1992,118(11):2246-2264.
[5] RAFEET A,VINAI R,SOUTSOS M,et al.Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs) [J].Cement and Concrete Research,2019,122:118-135.
[6] ZHANG S,LI V C,YE G.Micromechanics-guided development of a slag/fly ash-based strain-hardening geopolymer composite[J].Cement and Concrete Composites,2020,109:103510.
[7] NEMATOLLAHI B,SANJAYAN J,SHAIKH F U A.Matrix design of strain hardening fiber reinforced engineered geopolymer composite [J].Composites Part B:Engineering,2016, 89:253-265.
[8] KANDA T,LI V.Practical design criteria for saturated pseudo strain hardening behavior in ECC[J].Journal of Advanced Concrete Technology Copyright,2006,4:59-72.
[9] WANG S,LI V C.Engineered cementitious composites with high-volume fly ash[J].ACI Materials Journal,2007,104(3):233-241.
[10] WU Y,LU B,BAI T,et al.Geopolymer, green alkali activated cementitious material:Synthesis,applications and challenges [J]. Construction and Building Materials,2019,224:930-949.
[11] 张大旺,王栋民.地质聚合物混凝土研究现状[J].材料导报,2018,32(9):1519-1527,1540.
[12] OHNO M,LI V C.An integrated design method of Engineered Geopolymer Composite[J].Cement and Concrete Composites,2018,88:73-85.
[13] OHNO M,LI V C.A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites [J]. Construction and Building Materials,2014,57:163-168.
[14] 耿超,郭士会,刘志国,等.赤泥资源化综合利用现状及展望[J].中国有色冶金,2022,51(5):37-45.
[15] BAI B,BAI F,NIE Q,et al.A high-strength red mud-fly ash geopolymer and the implications of curing temperature[J].Powder Technology,2023,416:118242.
[16] ZHANG G,HE J,GAMBREL R P.Synthesis, characterization, and mechanical properties of red mud-based geopolymers[J].Transportation Research Record,2010,2167(1):1-9.
[17] LEMOUGNA P N,WANG K T,TANG Q,et al.Study on the development of inorganic polymers from red mud and slag system:Application in mortar and lightweight materials[J].Construction and Building Materials,2017,156:486-495.
[18] XU L Y,HUANG B T,LAN P Q,et al.Enhancing long-term tensile performance of Engineered Cementitious Composites(ECC) using sustainable artificial geopolymer aggregates [J]. Cement and Concrete Composites,2022,133:104676.
[19] KAN L,SHI R,ZHAO Y.Feasibility study on using incineration fly ash from municipal solid waste to develop high ductile alkali-activated composites[J].Journal of Cleaner Production,2020,254:120168.
[20] 丁聪.高延性水泥基复合材料的细观力学修正模型及其调控机制[D].南京:东南大学,2021.
[21] ZHOU Y,GONG G,HUANG Y,et al.Feasibility of incorporating recycled fine aggregate in high performance green lightweight engineered cementitious composites[J].Journal of Cleaner Production,2021,280:124445.
[22] WU J D,GUO L P,CAO Y Z,et al.Mechanical and fiber/matrix interfacial behavior of ultra-high-strength and high-ductility cementitious composites incorporating waste glass powder[J].Cement and Concrete Composites,2022,126:104371.
[23] 郭丽萍,谌正凯,杨亚男.一种短切超细有机纤维与水泥基复合材料界面粘结强度的测试方法:CN201510167494.7[P].2017-06-05.
[24]    LYU B C,GUO L P,FEI X P,et al.Preparation and properties of green high ductility geopolymer composites incorporating recycled fine brick aggregate[J].Cement and Concrete Composites,2023,139:105054.
[25] PROVIS J,VAN D J.Geopolymers:Structures,processing, properties and industrial applications[M].New York:Springer Netherlands,2009.
[26] 马辉.ECC机场道面加铺层的材料及结构研究[D].南京:东南大学,2017.
[27] YIP C K,LUKEY G C,VAN-DEVENTER J S J.The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation[J].Cement and Concrete Research,2005,35(9):1688-1697.
[28] YU K Q,ZHU W J,DING Y,et al.Micro-structural and mechanical properties of ultra-high performance engineered cementitious composites(UHP-ECC) incorporation of recycled fine powder(RFP)[J].Cement and Concrete Research,2019,124:105813.
[29] CONSTANCIO T A C,CUROSU I,LIEBSCHER M,et al.On the mechanical performance of K- and Na-based strain-hardening geopolymer composites (SHGC) reinforced with PVA fibers [J].Construction and Building Materials,2020,248:118558.
[30] LEE Y,CHOI J I,KIM H K,et al.Effects of a defoamer on the compressive strength and tensile behavior of alkali-activated slag-based cementless composite reinforced by polyethylene fiber[J].Composite Structures,2017,172:166-172.
[31] CHOI J I,SONG K I,SONG J K,et al.Composite properties of high-strength polyethylene fiber-reinforced cement and cementless composites[J].Composite Structures,2016,138:116-121.
[32] ALMAJIDI M H,LAMPROPOULOS A,CUNDY A B. Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics[J].Composite Structures,2017,168:402-427.
[33] NAAMAN A,REINHARDT H.Characterization of high performance fiber reinforced cement composites-HPFRCC:proceedings of the high performance fiber reinforced cement composites[M].Mainz:Publishing Company of RILEM,1996.
[34] REDON C,LI V C,WU C,et al.Measuring and modifying interface properties of PVA fibers in ECC matrix[J].Journal of Materials in Civil Engineering,2001,13(6):399-406.
[35] NEMATOLLAHI B,QIU J,YANG E H,et al.Microscale investigation of fiber-matrix interface properties of strain-hardening geopolymer composite[J].Ceramics International, 2017,43(17):15616-15625.
[36] LYU B C,DING C,GUO L P,et al.Basic performances and potential research problems of strain hardening geopolymer composites: A critical review[J].Construction and Building Materials,2021,287:123030.
[37] LING Y,WANG K,LI W,et al.Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites[J].Composites Part B:Engineering,2019,164:747-757.   
[38] ALREFAEI Y,DAI J G.Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites[J].Construction and Building Materials,2018,184: 419-431.
[39] KAN L,ZHANG L,ZHAO Y,et al.Properties of polyvinyl alcohol fiber reinforced fly ash based Engineered Geopolymer Composites with zeolite replacement[J].Construction and Building Materials,2020,231:117161.
[40] KANDA T,LI V C.Practical design criteria for saturated pseudo strain hardening behavior in ECC[J].Journal of Advanced Concrete Technology,2006,4(1):59-72.
[41] PAKRAVAN H R,OZBAKKALOGLU T.Synthetic fibers for cementitious composites:A critical and in-depth review of recent advances [J].Construction and Building Materials,2019, 207:491-518.
[42] LI C,SUN H,LI L.A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements [J].Cement and Concrete Research,2010,40(9):1341-1349.
[43] ZHANG D,YU J,WU H,et al.Discontinuous micro-fibers as intrinsic reinforcement for ductile Engineered Cementitious Composites (ECC)[J].Composites Part B: Engineering,2020,184: 107741.

杜智荣,侯宇,吕邦成,.PCCP外层防护用复合材料的力学性能研究[J].混凝土与水泥制品,2024(6):43-50.

DU Z R,HOU Y,LYU B C,et al.Research on mechanical properties of composite materials for PCCP outer layer protection[J].China Concrete and Cement Products,2024(6):43-50.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州