[1] 黄政宇,许卓.碳纤维织物增强UHPFRC(PE)薄板抗弯性能试验研究[J].铁道科学与工程学报,2018,15(2):450-457.
[2] 邵旭东,莫然,曹君辉,等.钢-UHPC轻型组合桥面受模拟行车扰动后抗裂性能研究[J].湖南大学学报(自然科学版)中文版,2022,49(3):1-13.
[3] 曾丹,刘扬,曹磊.钢-UHPC组合结构新型剪力件的抗剪性能[J].浙江大学学报(工学版),2021,55(9):1714-1724,1771.
[4] 魏久淇,李磊,王世合,等.超高性能混凝土临空板接触爆炸破坏效应实验研究[J].爆炸与冲击,2022,42(4):28-35.
[5] GHAFARI E,BANDARABADI M,COSTA H,et al.Prediction of fresh and hardened state properties of UHPC: Comparative study of statistical mixture design and an artificial neural network model[J].Journal of Materials in Civil Engineering,2015(11):0001270.
[6] ZARANDI M H F,TURKSEN I B,SOBHANI J,et al.Fuzzy polynomial neural networks for approximation of the compressive strength of concrete[J].Applied Soft Computing,2008,8(1):488-498.
[7] 陈庆,马瑞,蒋正武,等.基于GA-BP神经网络的UHPC抗压强度预测与配合比设计[J].建筑材料学报,2020,23(1):176-183,191.
[8] 张清华,程震宇,廖贵星,等.波形顶板-UHPC组合桥面板优化设计[J].西南交通大学学报,2018,53(4):670-678.
[9] ABELLAN J.FOLD K.Validation neural network approach for predicting the one-day compressive strength of UHPC[J].Advances in Civil Engineering Materials,2021,55:142736.
[10] AMINI P A,ZHANG S,HUANG D,et al.Application of artificial neural networks and multiple linear regression on local bond stress equation of UHPC and reinforcing steel bars[J].Scientific Reports,2021,11(1):15061.
[11] FAN D Q,RUI Y,LIU K N,et al.Optimized design of steel fibres reinforced ultra-high performance concrete(UHPC) composites: Towards to dense structure and efficient fibre application[J].Construction and Building Materials,2021,273:1-13.
[12] VAPNIK V N.Statistical Learning Theory[J].Ann Arbor, 1998,1001(48):9.
[13] 曹斐,周彧,王春晓,等.一种改进的支持向量回归的混凝土强度预测方法[J].硅酸盐通报,2021,40(1):90-97.
[14] KHAZAEUU A,GHALEHNOVI M.Bearing stiffness of UHPC; An experimental investigation and a comparative study of regression and SVR-ABC models[J].Journal of Advanced Concrete Technology,2018,16(3):145-158.
[15] CHAABENE W B,FLAB M,NEHDI M L.Machine learning prediction of mechanical properties of concrete: critical review[J].Construction and Building Materials,2020,260:1-18.
[16] JIANG C S,LIANG G Q.Modeling shear strength of medium to ultra-high strength concrete beams with stirrups using SVR and genetic algorithm[J].Soft Computing,2021,25(16):10661-10675.
[17] 黄炜,周烺,葛培,等.基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J].材料导报,2021,35(15):15026-15030.
[18] YASEEN Z M,TRAN M T,KIM S,et al.Shear strength prediction of steel fiber reinforced concrete beam using hybridintelligence models: A new approach[J].Engineering Structures,2018,177:244-255.
[19] ABUODEH O,ABDALLA J A,HAWILEH R A.Prediction of compressive strength of ultra-high performance concrete using SFS and ANN[C]//Institute of Electrical and Electronic Engineers(IEEE).2019 8th International Conference on Modeling Simulation and Applied Optimization(ICMSAO).America:IEEE,2019:978-981.
[20] MARANA A,JAMALI A,NEHDI M L.Predicting ultra-high performance concrete compressive strength using tabular generative adversarial networks[J].Materials,2020,13(47):1-24.
[21] HAECKER B C J.An argument for using coarse cements in high-performance concretes[J].Cement and Concrete Research,1999,98:1-4.
[22] 黄伟,孙伟.石灰石粉掺量对超高性能混凝土水化演变的影响[J].东南大学学报(自然科学版),2017,47(4):751-759.
[23] FAN D,YU R,FU S,et al.Precise design and characteristics prediction of ultra-high performance concrete(UHPC) based on artificial intelligence techniques[J].Cement and Concrete Composites,2021,10:104171.
[24] 肖俊璋,肖俊光.回归饱和设计值得商榷的问题[J].植物营养与肥料学报,2011,17(5):1274-1277.
[25] KENNEDY J,EBERHART R.Particle swarm optimization[C]//Institute of Electrical and Electronic Engineers(IEEE).95th international Conference on Neural Networks.America:IEEE,1995:468-488.
[26] LI L G,KWAN A K H.Packing density of concrete mix under dry and wet conditions[J].Powder Technology,2014,253:514-521.
[27] 高云,杜春苗,李栋,等.水胶比对高强混凝土力学性能影响的实验研究[J].西安建筑科技大学学报(自然科学版),2020,52(5):653-659.
[28] 申艳军,张欢,潘佳,等.混凝土界面过渡区微-细观结构识别及形成机制研究进展[J].硅酸盐通报,2020,39(10):3055-3069.
[29] 杨玉柱,黄维蓉,耿嘉庆,等.基于半经验的UHPC配合比设计方法[J].材料导报,2021,35(增刊2):188-193.
[30] LARRARD D F.Concrete mixture proportioning: A scientific approach[M].London:CRC Press,1999.
[31] WOMG V,KWAN A K H.A 3-parameter model for packing density prediction of ternary mixes of spherical particles[J].Powder Technology,2014,268(1):357-367.
[32] 高国华,黄卫东,李传海.纳米SiO2增强骨料裹浆对混凝土抗冻性能的改善[J].建筑材料学报,2021,24(1):45-53.