苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
基于SMOTE-XGBoost算法的混凝土强度预测
Prediction of strength of concrete based on SMOTE-XGBoost algorithm
2024年第8期
混凝土28 d抗压强度;机器学习;SMOTE-XGBoost算法;预测
28 d compressive strength of concrete; Machine learning; SMOTE-XGBoost algorithm; Prediction
2024年第8期
10.19761/j.1000-4637.2024.08.032.05
薛 飞
中交一公局第一工程有限公司,北京 102205

薛 飞

薛飞.基于SMOTE-XGBoost算法的混凝土强度预测[J].混凝土与水泥制品,2024(8):32-36.

XUE F.Prediction of strength of concrete based on SMOTE-XGBoost algorithm[J].China Concrete and Cement Products,2024(8):32-36.

浏览量:
1000
摘   要:基于244组混凝土配合比构建了数据库,采用SMOTE-XGBoost算法对混凝土28 d抗压强度进行了预测。首先通过SMOTE算法对划分的训练集进行平衡处理;然后对比了SMOTE算法平衡前后XGBoost与常用混凝土强度预测模型的评估结果;最后进行了SMOTE-XGBoost算法的实际工程验证。结果表明:SMOTE-XGBoost算法有效解决了数据不平衡问题,提高了预测模型的精度;相较于其他机器学习模型,SMOTE-XGBoost算法的预测结果较好;应用SMOTE-XGBoost算法对无岳高速WYTJ-07标段工程自制花岗岩混凝土的28 d抗压强度进行了预测,预测结果误差较小,该算法在工程混凝土强度预测方面具有广泛的应用前景。 Abstract:  A database was constructed based on 244 sets of concrete mix proportions, and the SMOTE-XGBoost algorithm was used to predict the compressive strength of concrete at 28 d. Firstly, the divided training set was balanced using the SMOTE algorithm. Then, the evaluation results of XGBoost and commonly used concrete strength prediction models before and after balancing using the SMOTE algorithm were compared. Finally, practical engineering validation of the SMOTE-XGBoost algorithm was conducted. The results show that the SMOTE-XGBoost algorithm effectively solves the problem of data imbalance and improves the accuracy of the prediction model. Compared to other machine learning models, the SMOTE-XGBoost algorithm has better prediction results. The SMOTE-XGBoost algorithm is applied to predict the 28 d compressive strength of homemade granite concrete in the WYTJ-07 section of the Wuyue Expressway project, and the prediction results show a small error, and this algorithm has broad application prospects in predicting the strength of engineering concrete.
英文名 : Prediction of strength of concrete based on SMOTE-XGBoost algorithm
刊期 : 2024年第8期
关键词 : 混凝土28 d抗压强度;机器学习;SMOTE-XGBoost算法;预测
Key words : 28 d compressive strength of concrete; Machine learning; SMOTE-XGBoost algorithm; Prediction
刊期 : 2024年第8期
DOI : 10.19761/j.1000-4637.2024.08.032.05
文章编号 :
基金项目 :
作者 : 薛 飞
单位 : 中交一公局第一工程有限公司,北京 102205

薛 飞

薛飞.基于SMOTE-XGBoost算法的混凝土强度预测[J].混凝土与水泥制品,2024(8):32-36.

XUE F.Prediction of strength of concrete based on SMOTE-XGBoost algorithm[J].China Concrete and Cement Products,2024(8):32-36.

摘要
参数
结论
参考文献
引用本文

摘   要:基于244组混凝土配合比构建了数据库,采用SMOTE-XGBoost算法对混凝土28 d抗压强度进行了预测。首先通过SMOTE算法对划分的训练集进行平衡处理;然后对比了SMOTE算法平衡前后XGBoost与常用混凝土强度预测模型的评估结果;最后进行了SMOTE-XGBoost算法的实际工程验证。结果表明:SMOTE-XGBoost算法有效解决了数据不平衡问题,提高了预测模型的精度;相较于其他机器学习模型,SMOTE-XGBoost算法的预测结果较好;应用SMOTE-XGBoost算法对无岳高速WYTJ-07标段工程自制花岗岩混凝土的28 d抗压强度进行了预测,预测结果误差较小,该算法在工程混凝土强度预测方面具有广泛的应用前景。

Abstract:  A database was constructed based on 244 sets of concrete mix proportions, and the SMOTE-XGBoost algorithm was used to predict the compressive strength of concrete at 28 d. Firstly, the divided training set was balanced using the SMOTE algorithm. Then, the evaluation results of XGBoost and commonly used concrete strength prediction models before and after balancing using the SMOTE algorithm were compared. Finally, practical engineering validation of the SMOTE-XGBoost algorithm was conducted. The results show that the SMOTE-XGBoost algorithm effectively solves the problem of data imbalance and improves the accuracy of the prediction model. Compared to other machine learning models, the SMOTE-XGBoost algorithm has better prediction results. The SMOTE-XGBoost algorithm is applied to predict the 28 d compressive strength of homemade granite concrete in the WYTJ-07 section of the Wuyue Expressway project, and the prediction results show a small error, and this algorithm has broad application prospects in predicting the strength of engineering concrete.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)根据4种预测模型的结果评估对比,SMOTE-XGBoost模型在混凝土28 d抗压强度预测中表现最优。SMOTE算法不仅解决了数据不平衡的问题,还提高了模型的预测精度。
(2)经过实际工程数据的验证,SMOTE-XGBoost算法对花岗岩混凝土28 d抗压强度具有较高的预测精度,可应用于实际工程中。

[1] 黄士元.21世纪初期我国混凝土技术发展中的几个重点问题[J].混凝土,2002(3):3-7.
[2] PUMELL P,BLACK L.Short communication Embodied carbon dioxide in concrete: Variation with common mixdesign parameters[J].Cement and Concrete Research,2012,42(6):874-877.
[3] KIRK V,GABRIEL F,ISABELLA P,et al.Direct carbonation of Ca(OH)2 using liquid and supercritical CO2: Implications for carbon-neutral cementation[J].Industrial and Engineering Chemistry Research,2015,54(36):8908-8918.
[4] YEL I C.Modeling concrete strength with augment-neuron networks[J].Mater Civil Engerneeing,1998(10):263-268.
[5] 曹斐,周彧,王春晓,等.一种改进的支持向量回归的混凝土强度预测方法[J].硅酸盐通报,2021,40(1):90-97.
[6] COOK P,LAPEYRE J,MA H Y,et al.Prediction of compressive strength of concrete: Critical comparison of performance of a hybrid machine learning model with standalone models[J].Journal of Materials in Civil Engineering,2019,31(11):1-15.
[7] CHEN G,ZHU D L,WANG X,et al.Prediction of concrete compressive strength based on the BP neural network optimized by random forest and ISSA[J].Journal of Function Spaces,2022(1):1-20.
[8] 徐潇航,胡张莉,刘加平,等.基于机器学习回归模型的三峡大坝混凝土强度预测[J].材料导报,2023,37(2):41-49.
[9] CHAWLA N,BOWYER K,KEGELMEYER W,et al.SMOTE: Synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16:321-357.
[10] 李占山,刘兆赓.基于XGBoost的特征选择算法[J].通信学报,2019,40(10):101-108.
[11] 李金霞,卞华星,温富国,等.基于XGBoost的电网物资供应商履约风险预测[J].计算机科学,2024,51(增刊1):1186-1194.
[12] CHEN T,GUESTRIN C.Xgboost:A scalable tree boosting System[C]//Association for Computing Machinery.Proceedings of the International Conference on Knowledge Discovery and Data Mining.San Francisco:Association for Computing Machinery,2016:785-794.
[13] 邓文其.机制砂自密实混凝土配合比设计及性能研究[D].重庆:重庆交通大学,2021.
[14] 马成功.泵送普通混凝土配合比优化研究[D].银川:宁夏大学,2014. 
[15] 曹玉新.盾构管片钢纤维混凝土配合比设计优化[J].工业建筑,2020,50(8):101-104,159. 
[16] 杨黎明,孙玉杰,李凤霞.吉林省双河三级水电站工程混凝土配合比设计优化研究[J].吉林农业科技学院学报,2021,30(1):23-28.
[17] 方鹏程.高石粉机制砂自密实混凝土配合比优化及性能研究[D].重庆:重庆交通大学,2019. 
[18] 邓重阳,王利,吴利静.机制砂自密实片石混凝土配合比设计及工程应用[J].苏盐科技,2020,47(4):43-44. 
[19] 张戈,安明喆,王月,等.隧道湿喷高性能喷射混凝土配合比试验研究[J].混凝土与水泥制品,2021(12):12-15,28. 
[20] 孙和平.矿粉和粉煤灰双掺用于配制混凝土的价值分析[J].中国设备工程,2022(5):252-253. 
[21] 吕元师.矿粉和粉煤灰双掺用于配制混凝土的价值[J].福建建材,2019(5):10-11,84. 

薛飞.基于SMOTE-XGBoost算法的混凝土强度预测[J].混凝土与水泥制品,2024(8):32-36.

XUE F.Prediction of strength of concrete based on SMOTE-XGBoost algorithm[J].China Concrete and Cement Products,2024(8):32-36.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州