[1] 王雪妮.高温混凝土热损伤声电特征及破坏失稳前兆响应[D].北京:中国矿业大学,2020.
[2] 赵筠,廉慧珍,金建昌,等.钢-混凝土复合的新模式-超高性能混凝土(UHPC/UHPFRC)之一:钢-混凝土复合模式的现状、问题及对策与UHPC发展历程[J].混凝土世界,2013(10):56.
[3] SHAH S N R,AKASHAH F W,SHAFIGH P.Performance of high strength concrete subjected to elevated temperatures: A review[J].Fire Technology,2019,55(5):1571-1597.
[4] MILLARD A,PIERRE P.Modelling of concrete behaviour at high temperature[M].Hoboken:In RILEM state-of-the-art reports,2019.
[5] GAWIN D,PESAVENTO F,SCHREFLER B A.Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete[J].Computer Methods in Applied Mechanics and Engineering,2006,195:5707-5729.
[6] 何小芳,张亚爽,李小庆,等.水泥水化产物的热分析研究进展[J].硅酸盐通报,2012,31(5):1170-1174.
[7] LUCIA A R,PLATRET G,MASSIEU E,et al.The use of thermal analysis in assessing the effect of temperature on a cement paste[J].Cement and Concrete Research,2005,35(3):609-613.
[8] 赵东拂,高海静,贾朋贺,等.高强混凝土经不同高温历程后性能劣化研究[J].振动与冲击,2018,37(4):240-248.
[9] 吕天启,赵国藩,林志伸,等.高温后静置混凝土的微观分析[J].建筑材料学报,2003(2):135-141.
[10] 李忠友,刘元雪,姚志华.普通硅酸盐混凝土高温性能劣化分析模型[J].防灾减灾工程学报,2020,40(2):229-235.
[11] 申嘉荣,徐千军.高温对混凝土孔隙结构改变和抗压强度降低的规律研究[J].材料导报,2020,34(2):2046-2051.
[12] MALIK M,BHATTACHARYY S K,SUDHIRKUMAR V B.Thermal and mechanical properties of concrete and its constituents at elevated temperatures: A review[J].Construction and Building Materials,2021,270:121398.
[13] THATHSARANI K,PAUL J,SAM F,et al.Existing theories of concrete spalling and test methods relating to moisture migration patterns upon exposure to elevated temperatures-A review[J].Case Studies in Construction Materials,2022,16:e01111.
[14] IZABELA H.Behaviour of cement concrete at high temperature[J].Bulletin of the Polish Academy of Sciences,2013,61(1):145-154.
[15] JANSSON R.Fire spalling of concrete-A historical overview[J].MATEC Web of Conferences,2013,6:01001.
[16] WOOLSON I H.Investigation of the effect of heat upon the crushing strength and elastic properties of concrete[J].Proceedings of the American Society for Testing Materials,1905,35:156-161.
[17] HARMATHY T Z.Effect of moisture on the fire endurance of building elements[J].ASTM Special Technical Publication,1965,385:74-79.
[18] KHOYLOU N.Modelling of moisture migration and spalling behaviour in non-uniformly heated concrete[D].London:Imperial College London,1997.
[19] ICHIKAWA Y.Predictions of pressures, heat and moisture transfer leading to spalling of concrete in fire[D].London:Imperial Collage,2000.
[20] HEDAYATI M,SOFI M,MENDIS P,et al.A comprehensive review of spalling and fire performance of concrete members[J].Electronic Journal of Structural Engineering,2015,15(1):8-34.
[21] MARZIEH S,HUA N,NEGAR E K,et al.Residual compressive strength of concrete after exposure to high temperatures: A review and probabilistic models[J].Fire Safety Journal,2023,135:103698.
[22] 鲁浈浈,何杨,李林杰.混凝土高温爆裂性能影响因素及预防措施综述[J].火灾科学,2019,28(2):128-134.
[23] 单晨晨,杨鼎宜,张鑫怡,等.纤维混凝土高温力学机理综述[J].混凝土,2018(4):87-90,94.
[24] KODUR V,WASIM K.Effect of temperature on thermal properties of different types of high-strength concrete[J].Journal of Materials in Civil Engineering,2011,23(6):793-801.
[25] 柯晓军,冯耀纪,但宇.高温后机制砂混凝土抗压性能试验研究[J].混凝土,2022(4):100-103.
[26] 肖建庄,刘良林,董毓利,等.高性能混凝土高温爆裂研究进展[J].建筑科学与工程学报,2019,36(3):1-15.
[27] 王里,刘红彬,鞠杨,等.高强高性能混凝土高温爆裂机理研究进展[J].力学与实践,2014,36(4):403-412.
[28] JANSSON R.Fire spalling of concrete: Theoretical and experimental studies[D].Sweden:RISE Research Institutes of Sweden,2013.
[29] LIU J C,TAN K H,YAO Y.A new perspective on nature of fire-induced spalling in concrete[J].Construction and Building Materials,2018,184:581-590.
[30] ZHAO H B,HU Y,TANG K J,et al.Deterioration of concrete under coupled aggressive actions associated with load, temperature and chemical attacks: A comprehensive review[J].Construction and Building Materials,2022,322:126466.
[31] KODUR V.Properties of concrete at elevated temperatures[J].ISRN Civil Engineering,2014,2014:1-15.
[32] Sector Board for Building and Civil Engineering.Eurocode 2: Design of concrete structures-Part 1-2: General rules-Structural fire design:EN 1992-1-2:2004[S].Brussels:Sector Board for Building and Civil Engineering,2004.
[33] REKHA K,POTHARAJU D M.Residual compressive strength of recycled brick aggregate concrete at high temperatures[J].International Journal of Emerging Technology and Advanced Engineering,2015,5(1):159-164.
[34] 陈宗平,周春恒,李伊,等.高温后再生混凝土力学性能研究[J].建筑结构学报,2017,38(12):105-113.
[35] WASIM K,TAIMUR U.Mechanical and physical response of recycled aggregates high-strength concrete at elevated temperatures[J].Fire Safety Journal,2018,96:203-214.
[36] WANG Y G,LI S P,PETER H,et al.Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures[J].Construction and Building Materials,2020,247:118561.
[37] MA Q M,GUO R X,ZHAO Z M.Mechanical properties of concrete at high temperature-A review[J].Construction and Building Materials,2015,93:371-383.
[38] BABALOLA O E,AWOYERA P O,LE D H.A review of residual strength properties of normal and high strength concrete exposed to elevated temperatures: Impact of materials modification on behaviour of concrete composite[J].Construction and Building Materials,2021,296:123448.
[39] 朋改非,牛旭婧,成铠.超高性能混凝土的火灾高温性能研究综述[J].材料导报,2017,31(23):17-23.
[40] IVANKA N,IVANA K,IVICA G.The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates[J].Fire Safety Journal,2011,46:425-430.
[41] NIRY R R,BEAUCOUR A L,HEBERT R,et al.Thermal stability of different siliceous and calcareous aggregates subjected to high temperature[J].MATEC Web of Conferences,2013,6:07001.
[42] SUH H,JEE H,KIM J,et al.Influences of rehydration conditions on the mechanical and atomic structural recoverycharacteristics of Portland cement paste exposed to elevated temperatures[J].Construction and Building Materials,2020,235:117453.
[43] ZEGA C J,MAIO A A D.Recycled concrete made with different natural coarse aggregates exposed to high temperature[J].Construction and Building Materials,2009,23:2047-2052.
[44] XIAO J Z,FAN Y H,TAWANA M M.Residual compressive and flexural strength of a recycled aggregate concrete following elevated temperatures[J].Structural Concrete,2013,14(2):168-175.
[45] VIEIRA J P B,CORREIA J R,BRITO J D.Post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates[J].Cement and Concrete Research,2011,41:533-541.
[46] GHANDEHARI M,BEHNOOD A,KHANZADI M,et al.Residual mechanical properties of high-strength concretes after exposure to elevated temperatures[J].Journal of Materials in Civil Engineering,2010,22(1):59-64.
[47] 刘普,王明华,李庆涛.高温后路缘石再生骨料混凝土的力学性能[J].建筑材料学报,2022,25(12):1233-1240.
[48] SALAHUDDIN H,NAWAZ A,MAQSOOM A,et al.Effects of elevated temperature on performance of recycled coarse aggregate concrete[J].Construction and Building Materials,2019,202:415-425.
[49] ZHAO H,WANG Y Y,LIU F Q.Stress-strain relationship of coarse RCA concrete exposed to elevated temperatures[J].Magazine of Concrete Research,2017,69(13):649-664.
[50] 孙道胜,李泽英,刘开伟,等.再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J].材料导报,2021,35(11):11027-11033,11056.
[51] 徐明,王韬,陈忠范.高温后再生混凝土单轴受压应力-应变关系试验研究[J].建筑结构学报,2015,36(2):158-164.
[52] WANG L,ZHAO Y R,XING Y M.Investigating high-temperature deformation evolution of concrete under sustained loading using DIC technology and a temperature-mechanical coupled damage constitutive model[J].Construction and Building Materials,2022,324:126638.
[53] 时金娜,赵燕茹,郝松,等.基于DIC技术的高温后混凝土变形性能[J].建筑材料学报,2019,22(4):584-591.