苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
高性能地聚物基珊瑚砂浆的配合比设计与性能研究
Mix proportion design and performance study of high-performance geopolymer-based coral mortar
2024年第8期
单一质心设计法;流变性能;力学性能;耐蚀性;高性能地聚物基珊瑚砂浆(HPGM)
Simplex centroid design method; Rheological property; Mechanical property; Corrosion resistance; High-performance geopolymer-based coral mortar(HPGM)
2024年第8期
10.19761/j.1000-4637.2024.08.084.07
陈子禾1,何 易2,*,王星尧2
1.中国电建集团山东电力建设有限公司,山东 济南 250101;2.江苏苏博特新材料股份有限公司, 江苏 南京 211103

陈子禾1,何 易2,*,王星尧2

陈子禾,何易,王星尧.高性能地聚物基珊瑚砂浆的配合比设计与性能研究[J].混凝土与水泥制品,2024(8):84-90.

CHEN Z H,HE Y,WANG X Y.Mix proportion design and performance study of high-performance geopolymer-based coral mortar[J].China Concrete and Cement Products,2024(8):84-90.

浏览量:
1000
摘   要:采用单一质心设计法研究了矿渣-偏高岭土-激发剂三元体系对地聚物流变性能和力学性能的影响,确定了最佳三元复配比例。在此基础上制备了高性能地聚物基珊瑚砂浆(HPGM),研究了其在MgSO4与NaCl复合盐溶液侵蚀作用下的耐久性能及劣化机理,并与水泥基珊瑚砂浆(PC)进行了对比。结果表明:当矿渣、偏高岭土、激发剂的掺量分别为29、23、48 kg时,地聚物具有优异的流变性能(塑性黏度5.47 Pa·s、屈服应力547.21 Pa)和力学性能(7 d抗压强度76.3 MPa、28 d抗压强度93.2 MPa);在90 d侵蚀周期中,PC出现了明显的石膏型侵蚀破坏现象,抗压强度损失达31.6%,孔隙率增大了43.7%;HPGM内部致密的凝胶结构有效抑制了膨胀性石膏和其他劣化产物的形成,同时水化产物中的C-(A)-S-H凝胶和类水滑石相吸附了部分游离Cl-,使得HPGM在90 d侵蚀周期中未出现明显的侵蚀破坏现象,其抗压强度损失为12.0%,孔隙率增大了16.2%。 Abstract: The simplex centroid design method was used to study the influence of slag-metakaolin-activator ternary system on the rheological and mechanical properties of geopolymer, and the optimal ternary composite ratio was determined. On this basis, the high-performance geopolymer-based coral mortar (HPGM) was prepared, and its durability and degradation mechanism under the erosion of MgSO4 and NaCl composite salt solution were studied, and compared with cement-based coral mortar(PC). The results show that when the dosage of slag, metakaolin, and activator is 29, 23, and 48 kg respectively, the geopolymer has excellent rheological properties (plastic viscosity of 5.47 Pa·s, yield stress of 547.21 Pa) and mechanical properties (7 d compressive strength of 76.3 MPa, 28 d compressive strength of 93.2 MPa). During the 90 d erosion cycle, the PC exhibits significant gypsum type erosion damage, with the compressive strength loss of 31.6% and an increase in porosity of 43.7%. The dense gel structure inside the HPGM effectively inhibits the formation of expansive gypsum and other degraded products, and the C-(A)-S-H gel and hydrotalcite like phase in the hydration products absorb part of free Cl-, which makes the HPGM not appear obvious erosion damage in the 90 d erosion cycle, and its compressive strength loss is 12.0%, and the porosity increases by 16.2%.
英文名 : Mix proportion design and performance study of high-performance geopolymer-based coral mortar
刊期 : 2024年第8期
关键词 : 单一质心设计法;流变性能;力学性能;耐蚀性;高性能地聚物基珊瑚砂浆(HPGM)
Key words : Simplex centroid design method; Rheological property; Mechanical property; Corrosion resistance; High-performance geopolymer-based coral mortar(HPGM)
刊期 : 2024年第8期
DOI : 10.19761/j.1000-4637.2024.08.084.07
文章编号 :
基金项目 :
作者 : 陈子禾1,何 易2,*,王星尧2
单位 : 1.中国电建集团山东电力建设有限公司,山东 济南 250101;2.江苏苏博特新材料股份有限公司, 江苏 南京 211103

陈子禾1,何 易2,*,王星尧2

陈子禾,何易,王星尧.高性能地聚物基珊瑚砂浆的配合比设计与性能研究[J].混凝土与水泥制品,2024(8):84-90.

CHEN Z H,HE Y,WANG X Y.Mix proportion design and performance study of high-performance geopolymer-based coral mortar[J].China Concrete and Cement Products,2024(8):84-90.

摘要
参数
结论
参考文献
引用本文

摘   要:采用单一质心设计法研究了矿渣-偏高岭土-激发剂三元体系对地聚物流变性能和力学性能的影响,确定了最佳三元复配比例。在此基础上制备了高性能地聚物基珊瑚砂浆(HPGM),研究了其在MgSO4与NaCl复合盐溶液侵蚀作用下的耐久性能及劣化机理,并与水泥基珊瑚砂浆(PC)进行了对比。结果表明:当矿渣、偏高岭土、激发剂的掺量分别为29、23、48 kg时,地聚物具有优异的流变性能(塑性黏度5.47 Pa·s、屈服应力547.21 Pa)和力学性能(7 d抗压强度76.3 MPa、28 d抗压强度93.2 MPa);在90 d侵蚀周期中,PC出现了明显的石膏型侵蚀破坏现象,抗压强度损失达31.6%,孔隙率增大了43.7%;HPGM内部致密的凝胶结构有效抑制了膨胀性石膏和其他劣化产物的形成,同时水化产物中的C-(A)-S-H凝胶和类水滑石相吸附了部分游离Cl-,使得HPGM在90 d侵蚀周期中未出现明显的侵蚀破坏现象,其抗压强度损失为12.0%,孔隙率增大了16.2%。

Abstract: The simplex centroid design method was used to study the influence of slag-metakaolin-activator ternary system on the rheological and mechanical properties of geopolymer, and the optimal ternary composite ratio was determined. On this basis, the high-performance geopolymer-based coral mortar (HPGM) was prepared, and its durability and degradation mechanism under the erosion of MgSO4 and NaCl composite salt solution were studied, and compared with cement-based coral mortar(PC). The results show that when the dosage of slag, metakaolin, and activator is 29, 23, and 48 kg respectively, the geopolymer has excellent rheological properties (plastic viscosity of 5.47 Pa·s, yield stress of 547.21 Pa) and mechanical properties (7 d compressive strength of 76.3 MPa, 28 d compressive strength of 93.2 MPa). During the 90 d erosion cycle, the PC exhibits significant gypsum type erosion damage, with the compressive strength loss of 31.6% and an increase in porosity of 43.7%. The dense gel structure inside the HPGM effectively inhibits the formation of expansive gypsum and other degraded products, and the C-(A)-S-H gel and hydrotalcite like phase in the hydration products absorb part of free Cl-, which makes the HPGM not appear obvious erosion damage in the 90 d erosion cycle, and its compressive strength loss is 12.0%, and the porosity increases by 16.2%.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)当矿渣和偏高岭土的质量分数较低时,地聚物的屈服应力和塑性黏度相对较大;随着激发剂质量分数的增加,高反应活性的硅氧、铝氧单体逐渐溶出,并参与聚合反应中形成铝硅酸盐凝胶,浆体中的长链分子逐渐增多并相互交联,黏度随之显著升高。
(2)适当增加矿渣和偏高岭土的质量分数可有效提高地聚物的聚合度,细化孔结构,促进地聚物早期强度发展,其7 d、28 d抗压强度最高分别可达76.3 MP、93.2 MPa。尤其是矿渣质量分数的增加有助于形成低Ca/Si的C-(A)-S-H凝胶,其具有无序性及低孔隙率的特征,是地聚物的主要强度相。
(3)采用单一质心设计法可有效平衡地聚物工作性和力学性能之间的关系。综合考虑地聚物的屈服应力、塑性黏度和抗压强度,本文确定矿渣-偏高岭土-激发剂三元体系的最佳复配比例为:矿渣29 kg、偏高岭土23 kg、激发剂48 kg。
(4)经复合盐溶液侵蚀后,PC试件出现了明显的石膏型侵蚀破坏现象,抗压强度损失达31.6%,孔隙率增大了43.7%。而HPGM具有致密的凝胶结构及类水滑石相,可吸附游离Cl-,并有效抑制膨胀性石膏和其他劣化产物的形成,故在整个侵蚀周期中,HPGM试件未出现明显的侵蚀破坏现象,其抗压强度损失仅为12.0%,孔隙率增大了16.2%。

[1] WANG A G,LYU B C,ZHANG Z H,et al.The development of coral concretes and their upgrading technologies: A critical review[J].Construction and Building Materials,2018,187:1004-1019.
[2] WANG X Y,WANG A G,ZHANG Z H,et al.Enhancing the performance of alkali-activated material based coral concrete through microbubble aeration clean technology[J].Composites Part B:Engineering,2023,252:110519.

[3] 秦芳诚,亓海全,孟征兵,等.海洋工程高抗蚀筋材研究进展[J].材料导报,2022,36(6):158-164.
[4] 陈宣东,虞爱平,刘光焰,等.海工结构服役寿命预测细观数值模拟研究[J].建筑材料学报,2019,22(6):894-900.
[5] 荣辉,陈肖杰,刘德娥,等.海洋环境下混凝土的宏观生物腐蚀研究进展[J].硅酸盐学报,2022,50(2):503-511.
[6] ZHANG B,ZHU H,SHAH K W,et al.Performance evaluation and microstructure characterization of seawater and coral/sea sand alkali-activated mortars[J].Construction and Building Materials,2020,259:120403.
[7] LYU B C,WANG A G,ZHANG Z H,et al.Coral aggregate concrete: Numerical description of physical, chemical and morphological properties of coral aggregate[J].Cement and Concrete Composites,2019,100:25-34.
[8] CHU Y J,WANG A G,ZHU Y C,et al.Enhancing the performance of basic magnesium sulfate cement-based coral aggregate concrete through gradient composite design technology[J].Composites Part B:Engineering,2021,227:109382.
[9] DAMION T,CHAUNSALI P.Evaluating acid resistance of Portland cement, calcium aluminate cement, and calcium sulfoaluminate based cement using acid neutralisation[J].Cement and Concrete Research,2022,162:107000.
[10] LI P R,LI W G,YU T,et al.Investigation on early-age hydration, mechanical properties and microstructure of seawater sea sand cement mortar[J].Construction and Building Materials,2020,249:118776.
[11] YI Y,ZHU D J,GUO S C,et al.A review on the deterioration and approaches to enhance the durability of concrete in the marine environment[J].Cement and Concrete Composites,2020,113:103695.
[12] ZHANG B,ZHU H,LI F Z,et al.Compressive stress-strain behavior of seawater coral aggregate concrete incorporating eco-efficient alkali-activated slag materials[J].Construction and Building Materials,2021,299:123886.
[13] XU L Y,HUANG B T,LAO J C,et al.Tailoring strain-hardening behavior of high-strength Engineered Cementitious Composites (ECC) using hybrid silica sand and artificial geopolymer aggregates[J].Materials and Design,2022,220:110876.
[14] LUO R,LIU H,DUAN P,et al.Sulfate resistance and microstructure of metakaolin geopolymer reinforced by cellulose nanofiber and wollastonite[J].Journal of Building Engineering,2023,64:105580.
[15] TRAN T T,PHAM T M,HAO H.Experimental and analytical investigation on flexural behavior of ambient cured geopolymer concrete beams reinforced with steel fibers[J].Engineering Structures,2019,200:109707.
[16] WU B,MA X,XIANG Y,et al.Lowering efflorescence potential of fly ash-based geopolymers by incorporating butyl stearate[J].Journal of Building Engineering,2023,73:106819.
[17] LI N,SHI C J,ZHANG Z H,et al.A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete[J].Cement and Concrete Composites,2018,93:163-174.
[18] JIAO D W,SHI C J,YUAN Q,et al.Mixture design of concrete using simplex centroid design method[J].Cement and Concrete Composites,2018,89:76-88.
[19] 国家市场监督管理总局,国家标准化管理委员会.水泥胶砂强度检验方法(ISO法):GB/T 17671—2021[S].北京:中国标准出版社,2021.
[20] HAHA M B,SAOUT G L,WINNEFELD F,et al.Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags[J].Cement and Concrete Research,2011,41(3):301-310.
[21] ARNOULT M,PERRONNET M,AUTEF A,et al.How to control the geopolymer setting time with the alkaline silicate solution[J].Journal of Non-Crystalline Solids,2018,495:59-66.
[22] XIE N,DANG Y D,SHI X M.New insights into how MgCl2 deteriorates Portland cement concrete[J].Cement and Concrete Research,2019,120:244-255.
[23] D?譕UNUZOVIC N,KOMLJENOVIC M,NIKOLIC V,et al.External sulfate attack on alkali-activated fly ash-blast furnace slag composite[J].Construction and Building Materials,2017,157:737-747.
[24] OSIO-NORGAARD J,GEVAUDAN J P,SRUBAR-Ⅲ W V.A review of chloride transport in alkali-activated cement paste, mortar, and concrete[J].Construction and Building Materials,2018,186:191-206.
[25] HAN B G,DONG S F,OU J P,et al.Microstructure related mechanical behaviors of short-cut super-fine stainless wire reinforced reactive powder concrete[J].Materials and Design,2016,96:16-26.
[26] ROBUSCHI S,TENGATTINI A,DIJKSTRA J,et al.A closer look at corrosion of steel reinforcement bars in concrete using 3D neutron and X-ray computed tomography[J].Cement and Concrete Research,2021,144:106439.

陈子禾,何易,王星尧.高性能地聚物基珊瑚砂浆的配合比设计与性能研究[J].混凝土与水泥制品,2024(8):84-90.

CHEN Z H,HE Y,WANG X Y.Mix proportion design and performance study of high-performance geopolymer-based coral mortar[J].China Concrete and Cement Products,2024(8):84-90.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州