戚喜章,吴雨航*,钱大桐
戚喜章,吴雨航,钱大桐.基于CRITIC-LightGBM算法的混凝土强度预测模型[J].混凝土与水泥制品,2024(9):17-20,27.
QI X Z,WU Y H,QIAN D T.Prediction model for compressive strength of concrete based on CRITIC-LightGBM algorithm[J].China Concrete and Cement Products ,2024(9):17-20,27.
基于CRITIC-LightGBM算法的混凝土强度 预测模型
戚喜章,吴雨航*,钱大桐
戚喜章,吴雨航,钱大桐.基于CRITIC-LightGBM算法的混凝土强度预测模型[J].混凝土与水泥制品,2024(9):17-20,27.
QI X Z,WU Y H,QIAN D T.Prediction model for compressive strength of concrete based on CRITIC-LightGBM algorithm[J].China Concrete and Cement Products ,2024(9):17-20,27.
摘 要:为了更精确地对混凝土抗压强度进行预测,以水泥、炉渣、粉煤灰、水、减水剂、粗骨料、细骨料、龄期作为混凝土强度预测指标,运用CRITIC算法对指标进行了加权处理,在此基础上,引入新的机器学习算法轻量级梯度提升机(LightGBM)对样本进行了计算训练,同时,运用K-10折交叉验证方式对模型参数进行了优化,最终建立了CRITIC-LightGBM混凝土抗压强度预测模型。运用该模型对混凝土的抗压强度进行了预测,并将结果与LightGBM、多层感知机(MLP)和支持向量机回归(SVR)的预测结果进行了对比。结果表明:与较单一的LightGBM、MLP和SVR算法相比,CRITIC-LightGBM模型预测的平均绝对误差和均方根误差更小,准确性更高,R2更接近1,模型的泛化能力明显提高。
Abstract: In order to predict the compressive strength of concrete more accurately, cement, slag, fly ash, water, water reducer, coarse aggregate, fine aggregate and age were used as the prediction indexes of concrete strength. The CRITIC algorithm was used to weight the indexes. On this basis, a new machine learning algorithm Light Gradient Boosting Machine(LightGBM) was introduced to calculate and train the samples. At the same time, the K-10 fold cross-validation method was used to optimize the model parameters. Finally, the CRITIC-LightGBM model for predicting the compressive strength of concrete was established. The model was used to predict the compressive strength of concrete, and the prediction results were compared with those of LightGBM, multi-layer perceptron(MLP) and support vector machine regression(SVR) algorithm. The results show that compared with the relatively single LightGBM, MLP, and SVR algorithms,the CRITIC-LightGBM prediction model has smaller mean absolute error and root mean square error, and has higher accuracy. R2 is closer to 1, and the generalization ability of the model is significantly improved.
版权所有:中国混凝土与水泥制品网 苏ICP备10086386号 网站建设:中企动力 苏州