苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
纳米SiO2气凝胶水泥基复合材料中水的形态分布规律研究
Study on moisture morphology distribution of nano-SiO2 aerogel cement based composites
2024年第11期
纳米SiO2气凝胶;水泥基复合材料;T2谱;水分分布;吸水
Nano-SiO2 aerogel; Cement based composite; T2 spectrum; Moisture distribution; Water absorption
2024年第11期
10.19761/j.1000-4637.2024.11.012.05
国家自然科学基金面上项目(51976205)。
周 暘1,黄冬梅1,*,丰桢敏1,2,杨建红1
1.中国计量大学 能源环境与安全工程学院,浙江 杭州 310018;2.服务型制造研究院, 浙江 杭州 311199

周 暘1,黄冬梅1,*,丰桢敏1,2,杨建红1

周暘,黄冬梅,丰桢敏,等.纳米SiO2气凝胶水泥基复合材料中水的形态分布规律研究[J].混凝土与水泥制品,2024(11):12-16.

ZHOU Y,HUANG D M,FENG Z M,et al.Study on moisture morphology distribution of nano-SiO2 aerogel cement based composites[J].China Concrete and Cement Products,2024(11):12-16.

浏览量:
1000
英文名 : Study on moisture morphology distribution of nano-SiO2 aerogel cement based composites
刊期 : 2024年第11期
关键词 : 纳米SiO2气凝胶;水泥基复合材料;T2谱;水分分布;吸水
Key words : Nano-SiO2 aerogel; Cement based composite; T2 spectrum; Moisture distribution; Water absorption
刊期 : 2024年第11期
DOI : 10.19761/j.1000-4637.2024.11.012.05
文章编号 :
基金项目 : 国家自然科学基金面上项目(51976205)。
作者 : 周 暘1,黄冬梅1,*,丰桢敏1,2,杨建红1
单位 : 1.中国计量大学 能源环境与安全工程学院,浙江 杭州 310018;2.服务型制造研究院, 浙江 杭州 311199

周 暘1,黄冬梅1,*,丰桢敏1,2,杨建红1

周暘,黄冬梅,丰桢敏,等.纳米SiO2气凝胶水泥基复合材料中水的形态分布规律研究[J].混凝土与水泥制品,2024(11):12-16.

ZHOU Y,HUANG D M,FENG Z M,et al.Study on moisture morphology distribution of nano-SiO2 aerogel cement based composites[J].China Concrete and Cement Products,2024(11):12-16.

摘要
参数
结论
参考文献
引用本文

摘   要:为了研究纳米SiO2气凝胶对水泥基复合材料水分分布机制的影响,采用LF-NMR技术对室温环境下不同掺量(0、5%、7%、10%)纳米SiO2气凝胶水泥基复合材料(AIC)吸水30 min后的T2信号进行了测试,在真空饱和的条件下,采用孔隙体积内饱水度描述AIC吸水前后含水量空间变化。结果表明:AIC0、AIC5、AIC7、AIC10试件的T2谱最高峰的峰面积所占比例分别为83.0%、78.7%、79.3%、79.6%,掺入纳米SiO2气凝胶降低了最高峰的峰面积;当纳米SiO2气凝胶掺量由0增至10%时,AIC试件的吸附水、毛细管水及孔隙水饱水度均减小;纳米SiO2气凝胶能降低AIC的自由水存储性能。

Abstract: In order to investigate the effect of nano-SiO2 aerogel on the water distribution mechanism of cement based composites, the T2 signals of cement based composites with different nano-SiO2 aerogel contents(0、5%、7%、10%) after 30 min of water absorption at room temperature environment were tested by LF-NMR technique. The spatial variation of water content before and after water absorption of AIC specimens was described using the degree of water saturation in the pore volume under vacuum saturation conditions. The results show that the percentage of peak area of the highest peak of T2 spectra of AIC0, AIC5, AIC7, and AIC10 is 83.0%, 78.7%, 79.3%, and 79.6%, respectively, and adding nano-SiO2 aerogel reduces the peak area of the highest peak. When the content of nano-SiO2 aerogel increases from 0 to 10%, the adsorption water, capillary water, and pore water saturation of AIC specimens all decrease. Nano-SiO2 aerogel can reduce the free water storage performance of AIC.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)随着纳米SiO2气凝胶掺量的增加,最高峰的峰面积所占比例减小,吸附水、毛细管水、孔隙水饱水度均减小。纳米SiO2气凝胶掺入后尽管增加了内部水分的自由度,但降低了AIC中可移动水的存储性能。
(2)纳米SiO2气凝胶掺量的增加提高了AIC内部水分的自由度,使其具有更好的热膨胀系数,有助于改善其加工性能,同时,较低的水饱水度有助于减少AIC的质量,从而在某些轻量化应用中占据优势。但纳米SiO2气凝胶掺量的增加也会导致T2峰面积比例减小和水饱水度降低,这意味着纳米SiO2气凝胶的吸附能力和存储性能可能会受到一定的影响。因此,在实际应用中,纳米SiO2气凝胶的掺量需严格控制,并根据实际工程情况选取适宜的掺量。

[1] MAHMOODZADEH M,GRETKA V,WONG S,et al.Evaluating patterns of building envelope air leakage with infrared thermography[J].Energies,2020,13:143545.
[2] YAO H,XIE Z L,HUANG C H,et al.Recent progress of hydrophobic cement-based materials: Preparation, characterization and properties[J].Construction and Building Materials,2021,299:124255.
[3] WANG Y,YUAN Q,DENG D,et al.Modeling compressive strength of cement asphalt composite based on pore size distribution[J].Construction and Building Materials,2017,150:714-722.

[4] LIU S,ZHU K,CUI S,et al.A novel building material with low thermal conductivity: Rapid synthesis of foam concrete reinforced silica aerogel and energy performance simulation[J].Energy and Buildings,2018,177:385-393.
[5] 王修贵,程功,张文静.气凝胶保温砂浆导热影响因素及建筑能耗研究[J].混凝土与水泥制品,2019(12):70-73.
[6] WANG Y,HUANG J,WANG D,et al.Experimental investigation on thermal conductivity of aerogel-incorporated concrete under various hygrothermal environment[J].Energy,2019,188:115999.
[7] RATKE L.Herstellung und eigenschaften eines neuen leichtbetons: Aerogelbeton[J].Betonund Stahlbetonbau,2008,103:236-243.
[8] ZAIDI A K A A,DEMIREL B,ATIS C D.Effect of different storage methods on thermal and mechanical properties of mortar containing aerogel, fly ash and nano-silica[J].Construction and Building Materials,2019,199:501-507.
[9] CHENG H L,YANG F,YI W,et al.Influence on the performances of foamed concrete by silica aerogels[J].American Journal of Civil Engineering,2015(3):183-188.
[10] GAO T,JELLE B P,GUSTAVSEN A,et al.Aerogel-incorporated concrete: An experimental study[J].Construction and Building Materials,2014,52:130-136.
[11] DE-FATIMA-JULIO M,SOARES A,ILHARCO L M,et al.Aerogel-based renders with lightweight aggregates: Correlation between molecular/pore structure and performance[J].Construction and Building Materials,2016,124:485-495.
[12] BOSTANCI L,SOLA O C.Mechanical properties and thermal conductivity of aerogel-incorporated alkali-activated slag mortars[J].Advances in Civil Engineering,2018,18:1-9.
[13] 路珏,蒋俊,卢忠远,等.气凝胶-水泥复合多孔材料的孔结构与硬化性能[J].混凝土与水泥制品,2020(9):11-15.
[14] LIU K S,ZHENG X F,HSIEH C H,et al.The application of silica-based aerogel board on the fire resistance and thermal insulation performance enhancement of existing external wall system retrofit[J].Energies,2021,14:154518.
[15] LU J,JIANG J,LU Z Y,et al.Pore structure and hardened properties of aerogel/cement composites based on nanosilica and surface modification[J].Construction and Building Materials,2020,245:118434.
[16] 刘一钉.空心玻璃微珠增强水泥基复合材料轴压力学性能及损伤分析[D].重庆:重庆大学,2020.
[17] KOOSHAFAR M,MADANI H.An investigation on the influence of nano silica morphology on the characteristics of cement composites[J]Journal of Building Engineering,2020,30:101293.
[18] ZHOU C,REN F,WANG Z,et al.Why permeability to water is anomalously lower than that to many other fluids for cement-based material?[J].Cement and Concrete Research,2017,100:373-384.
[19] 张爱,葛勇.不同粒径纳米氧化硅改性白水泥水化过程的~1H低场核磁弛豫特征(英文)[J].硅酸盐学报,2021,49(8):1662-1669.
[20] LI Y,WANG R,LI S,et al.Assessment of the freeze-thaw resistance of concrete incorporating carbonated coarse recycled concrete aggregates[J].Journal of the Ceramic Society of Japan,2017,125:837-845.
[21] JEHNG J Y,SPRAGUE D T,HALPERIN W P.Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing[J].Magnetic Resonance Imaging,1996(14):785-791.
[22] ASTM.Standard Test Methods for Determination of the Water Absorption Coefficient by Partial Immersion:ASTM-C1794—2019[S].American:American Society for Testing Materials,2019.

周暘,黄冬梅,丰桢敏,.纳米SiO2气凝胶水泥基复合材料中水的形态分布规律研究[J].混凝土与水泥制品,2024(11):12-16.

ZHOU Y,HUANG D M,FENG Z M,et al.Study on moisture morphology distribution of nano-SiO2 aerogel cement based composites[J].China Concrete and Cement Products,2024(11):12-16.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州