苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
环境温度对超高韧性地聚合物复合材料抗冲击性能的影响
Effect of environmental temperature on the impact resistance of ultra-high toughness geopolymer composites
2024年第11期
超高韧性地聚合物复合材料(UHTGC);PVA纤维;抗冲击性能;环境温度;冲击耗能
Ultra-high toughness geopolymer composite(UHTGC); PVA fiber; Impact resistance; Environmental temperature; Impact energy consumption
2024年第11期
10.19761/j.1000-4637.2024.11.054.06
上海市科委科研计划项目(18DZ2282600);海口市科技计划项目(2022-036);上海建工集团股份有限公司资助项目(22YJKF-34)。
王圣怡1,2,李天歌1,周昱程1,2,3
1.上海建工集团股份有限公司,上海 200080;2.上海高大结构高性能混凝土工程技术研究中心,上海 200080;3.海南省沪建建设有限公司,海南 海口 430048

王圣怡1,2,李天歌1,周昱程1,2,3

王圣怡,李天歌,周昱程.环境温度对超高韧性地聚合物复合材料抗冲击性能的影响[J].混凝土与水泥制品,2024(11):54-59.

WANG S Y,LI T G,ZHOU Y C.Effect of environmental temperature on the impact resistance of ultra- high toughness geopolymer composites[J].China Concrete and Cement Products,2024(11):54-59.

浏览量:
1000
摘   要:研究了不同NaOH溶液浓度(8、10、12、14 mol/L)的超高韧性地聚合物复合材料(UHTGC)在常温(20 ℃)、高温(50、100、200 ℃)、低温(-20、-40、-60 ℃)环境下的抗冲击性能。结果表明:在常温环境下,随着NaOH溶液浓度的增大,UHTGC试件的抗冲击性能呈先增后降的趋势,最佳NaOH溶液浓度为12 mol/L;在高温环境下,随着NaOH溶液浓度的增大,UHTGC试件的抗冲击性能不断提高,当NaOH溶液浓度为14 mol/L时,UHTGC试件的峰值冲击荷载和冲击耗能均相对最大;在低温环境下,随着NaOH溶液浓度的增大,UHTGC试件的峰值冲击荷载呈先增后降的趋势,冲击耗能呈增大趋势,另外,随着低温温度的降低,UHTGC试件的冲击耗能逐渐增大。 Abstract: The impact resistance of ultra-high toughness geopolymer composites(UHTGC) with different concentrations(8, 10, 12, 14 mol/L) of NaOH solution at room temperature(20 ℃), high temperature(50, 100, 200 ℃), and low temperature(-20, -40, -60 ℃) environments was investigated. The results show that, at room temperature environment, with the increase of the concentration of NaOH solution, the impact resistance of UHTGC specimens shows a tendency of first increasing and then decreasing, and the optimal concentration of NaOH solution is 12 mol/L. At high temperature environment, with the increase of the concentration of NaOH solution, the impact resistance of UHTGC specimens is improved, and when the concentration of NaOH solution is 14 mol/L, the peak impact load and impact energy consumption of UHTGC specimens are relatively largest. At low temperature environment, with the increase of the concentration of NaOH solution, the peak impact load of UHTGC specimen shows a tendency of first increasing and then decreasing, and the impact energy consumption of UHTGC specimen shows a tendency of increasing. In addition, with the decrease of the low temperature, the impact energy consumption of UHTGC specimen increase gradually.
英文名 : Effect of environmental temperature on the impact resistance of ultra-high toughness geopolymer composites
刊期 : 2024年第11期
关键词 : 超高韧性地聚合物复合材料(UHTGC);PVA纤维;抗冲击性能;环境温度;冲击耗能
Key words : Ultra-high toughness geopolymer composite(UHTGC); PVA fiber; Impact resistance; Environmental temperature; Impact energy consumption
刊期 : 2024年第11期
DOI : 10.19761/j.1000-4637.2024.11.054.06
文章编号 :
基金项目 : 上海市科委科研计划项目(18DZ2282600);海口市科技计划项目(2022-036);上海建工集团股份有限公司资助项目(22YJKF-34)。
作者 : 王圣怡1,2,李天歌1,周昱程1,2,3
单位 : 1.上海建工集团股份有限公司,上海 200080;2.上海高大结构高性能混凝土工程技术研究中心,上海 200080;3.海南省沪建建设有限公司,海南 海口 430048

王圣怡1,2,李天歌1,周昱程1,2,3

王圣怡,李天歌,周昱程.环境温度对超高韧性地聚合物复合材料抗冲击性能的影响[J].混凝土与水泥制品,2024(11):54-59.

WANG S Y,LI T G,ZHOU Y C.Effect of environmental temperature on the impact resistance of ultra- high toughness geopolymer composites[J].China Concrete and Cement Products,2024(11):54-59.

摘要
参数
结论
参考文献
引用本文

摘   要:研究了不同NaOH溶液浓度(8、10、12、14 mol/L)的超高韧性地聚合物复合材料(UHTGC)在常温(20 ℃)、高温(50、100、200 ℃)、低温(-20、-40、-60 ℃)环境下的抗冲击性能。结果表明:在常温环境下,随着NaOH溶液浓度的增大,UHTGC试件的抗冲击性能呈先增后降的趋势,最佳NaOH溶液浓度为12 mol/L;在高温环境下,随着NaOH溶液浓度的增大,UHTGC试件的抗冲击性能不断提高,当NaOH溶液浓度为14 mol/L时,UHTGC试件的峰值冲击荷载和冲击耗能均相对最大;在低温环境下,随着NaOH溶液浓度的增大,UHTGC试件的峰值冲击荷载呈先增后降的趋势,冲击耗能呈增大趋势,另外,随着低温温度的降低,UHTGC试件的冲击耗能逐渐增大。

Abstract: The impact resistance of ultra-high toughness geopolymer composites(UHTGC) with different concentrations(8, 10, 12, 14 mol/L) of NaOH solution at room temperature(20 ℃), high temperature(50, 100, 200 ℃), and low temperature(-20, -40, -60 ℃) environments was investigated. The results show that, at room temperature environment, with the increase of the concentration of NaOH solution, the impact resistance of UHTGC specimens shows a tendency of first increasing and then decreasing, and the optimal concentration of NaOH solution is 12 mol/L. At high temperature environment, with the increase of the concentration of NaOH solution, the impact resistance of UHTGC specimens is improved, and when the concentration of NaOH solution is 14 mol/L, the peak impact load and impact energy consumption of UHTGC specimens are relatively largest. At low temperature environment, with the increase of the concentration of NaOH solution, the peak impact load of UHTGC specimen shows a tendency of first increasing and then decreasing, and the impact energy consumption of UHTGC specimen shows a tendency of increasing. In addition, with the decrease of the low temperature, the impact energy consumption of UHTGC specimen increase gradually.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)在常温环境下,UHTGC试件的抗冲击性能随NaOH溶液浓度的增大呈先增后降的趋势,当NaOH溶液浓度为12 mol/L时,UHTGC试件的峰值冲击荷载、冲击耗能相对最大,分别为3 428 N、7.10 J。
(2)在高温(50~200 ℃)环境下,UHTGC试件的抗冲击性能均随着NaOH溶液浓度的增大而增大,当NaOH溶液浓度为14 mol/L时,UHTGC试件的峰值冲击荷载和冲击耗能均相对最大;另外,随着环境温度由50 ℃增至200 ℃,UHTGC试件的冲击耗能基本呈增大趋势。
(3)在低温(-20~-60 ℃)环境下,随着NaOH溶液浓度的增大,UHTGC试件的峰值冲击荷载呈先增后降的趋势,冲击耗能呈增大趋势;随着环境温度的降低,UHTGC试件的冲击耗能逐渐增大。

[1] 陈忠清,丁佩思,吕越,等.炉渣-粉煤灰地聚合物固化铜污染土[J].有色金属工程,2023,13(9):161-169.
[2] 周正宁,张祖华,邓毓琳,等.CLDH对矿渣基地聚合物微观结构和性能的影响[J].硅酸盐学报,2023,51(9):2138-2152.
[3] 邬昊,王彦平,陈昶旭,等.硅灰石增强粉煤灰基地质聚合物性能研究[J].功能材料,2021,52(12):12110-12115.
[4] 刘岩,叶涛萍,曹万林.地聚物混凝土结构研究与发展[J].自然灾害学报,2020,29(4):8-19.
[5] 赵人达,王永宝,原元,等.地聚物混凝土收缩研究综述[J].硅酸盐通报,2020,39(6):1695-1702.
[6] MUGAHED A,SOLOMON D,TOGAY O.Fly ash-based eco-friendly geopolymer concrete:A critical review of the long-term durability properties[J].Construction and Building Materials,2021,270:121857.
[7] 赵人达,杨世玉,贾文涛,等.粉煤灰基地聚物混凝土的耐久性研究新进展[J].西南交通大学学报,2021,56(5):1065-1074.
[8] VISTIN P,ALI M M,ALBITAR M,et al.Shear behaviour of geopolymer concrete beams without stirrups[J].Construction and Building Materials,2017,148:10-21.
[9] 杨世玉,赵人达,郭秋雨,等.纤维地聚物混凝土断裂性能试验[J].工程科学与技术,2022,54(6):230-237.
[10] FARHAN A N,SHEIKH N M,HADI S N M.Axial load-bending moment(P-M) interactions of geopolymer concrete columns reinforced with and without steel fiber[J].ACI Structural Journal,2020,117(1):133-144.
[11] 黄华,郭梦雪,张伟,等.粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J].哈尔滨工业大学学报,2022,54(3):74-84.
[12] ALI M A,SANJAYAN J,GUERRIERI M.Performance of geopolymer high strength concrete wall panels and cylinders when exposed to a hydrocarbon fire[J].Construction and Building Materials,2017,137:195-207.
[13] NEMATOLLAHI B,SANJAYAN J,SHAIKH A U F.Tensile strain hardening behavior of PVA fiber-reinforced engineered geopolymer composite[J].Journal of Materials in Civil Engineering,2015,27(10):04015001.
[14] OHNO M,LI V C.An integrated design method of engineered geopolymer composite[J].Cement and Concrete Composites,2018,88:73-85.
[15] KHAN M Z N,HAO Y F,HAO H,et al.Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension[J].Cement and Concrete Composites,2019,104:103343.
[16] PAYAKANITI P,PINITSOONTORN S,THONGBAI P,et al.Electrical conductivity and compressive strength of carbon fiber reinforced fly ash geopolymeric composites[J].Construction and Building Materials,2017,135:164-176.
[17] 张鹏,赵燕坤,焦美菊,等.纳米SiO2和PVA纤维增强地聚合物砂浆断裂能研究[J].土木工程与管理学报,2019,36(5):68-72,89.
[18] 万进一.纤维增强地聚合物混凝土材料性能研究[D].郑州:郑州大学,2019.
[19] 刘杰.纤维增强地聚合物复合材料的界面性能及改性研究[D].青岛:青岛理工大学,2023.
[20] LING Y F,WANG K J,LI W G,et al.Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites[J].Composites Part B:Engineering,2019,164:747-757.
[21] ZAHID M,SHAFIQ N,RAZAK A N S,et al.Investigating the effects of NaOH molarity and the geometry of PVA fibers on the post-cracking and the fracture behavior of engineered geopolymer composite[J].Construction and Building Materials,2020,265:120295.
[22] NGUYAN H H,LUONG Q H,CHOI J I,et al.Ultra-ductile behavior of fly ash-based engineered geopolymer composites with a tensile strain capacity up to 13.7%[J].Cement and Concrete Composites,2021,122:104133.
[23] TRINDADE C C A,CUROSU I,LIEBSCHER M,et al.On the mechanical performance of K- and Na- based strain-hardeninggeopolymer composites(SHGC) reinforced with PVA fibers[J].Construction and Building Materials,2020,248:118558.
[24] 李明阳.PVA纤维增韧地聚合物复合材料动静态力学性能研究[D].徐州:中国矿业大学,2022.
[25] TRINDADE C C A,HERAVI A A,CUROSU I,et al.Tensile behavior of strain-hardening geopolymer composites(SHGC) under impact loading[J].Cement and Concrete Composites,2020,113:103703.
[26] 刘成.地聚合物基超高性能混凝土板抗接触爆炸研究[D].广州:广州大学,2023.
[27] ZHANG Y Y,JING L L,SUN C.Systems-based analysis of China-Tianjin port fire and explosion:A comparison of HFACS, AcciMap, and STAMP[J].Journal of Failure Analysis and Prevention,2018,18(6):1386-1400.
[28] 谭弘,孙林柱.地质聚合物的应用研究进展[J].云南化工,2023,50(6):1-3.
[29] 孔德勇,王凡,刘喜,等.生活垃圾焚烧飞灰地聚合物固化及资源化应用研究进展[J].环境保护科学,2022,48(6):24-29.
[30] 孙科科.冻融循环条件下地聚合物混凝土劣化规律及机理研究[D].重庆:重庆大学,2021.
[31] TAN J W,CAI J M,LI X P,et al.Development of eco-friendly geopolymers with ground mixed recycled aggregates and slag[J].Journal of Cleaner Production,2020,256:120369.
[32] WANG B,CHEN Y,FAN H,et al.Investigation of low-velocity impact behaviors of foamed concrete material[J].Composites Part B:Engineering,2019,162,491-499.
[33] REIG L,TASHIMA M M,SORIANO L,et al.Alkaline activation of ceramic waste materials[J].Waste and Biomass Valorization,2013,4(4):729-736.
[34] CAI J M,TAN J W,LI X P.Thermoelectric behaviors of fly ash and metakaolin based geopolymer[J].Construction and Building Materials,2020,237:117757.
[35] REMENNIKOV M A,KONG Y S,UY B.Response of foam- and concrete-filled square steel tubes under low-velocity impact loading[J].Journal of Performance of Constructed Facilities,2011,25(5):373-381.

王圣怡,李天歌,周昱程.环境温度对超高韧性地聚合物复合材料抗冲击性能的影响[J].混凝土与水泥制品,2024(11):54-59.

WANG S Y,LI T G,ZHOU Y C.Effect of environmental temperature on the impact resistance of ultra- high toughness geopolymer composites[J].China Concrete and Cement Products,2024(11):54-59.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州