苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
应变硬化水泥基复合材料增强钢筋混凝土构件受弯性能试验研究
Experimental study on bending performance of strain hardening cementitious composite material strengthening reinforced concrete components
2024年第11期
应变硬化水泥基复合材料;钢筋混凝土构件;受弯性能;破坏形态;承载能力
Strain hardening cementitious composite material; Reinforced concrete component; Bending performance; Failure mode; Bearing capacity
2024年第11期
10.19761/j.1000-4637.2024.11.065.05
江苏省自然科学基金资助项目(BK20211281);广东电网有限责任公司基建技术创新专题项目。
侯昌明1,张 朔1,陈 晓1,杨智峰1,张永兴2,*
1.广东电网有限责任公司佛山供电局,广东 佛山 528010;2.南京林业大学 土木工程学院, 江苏 南京 210037

侯昌明1,张 朔1,陈 晓1,杨智峰1,张永兴2,*

侯昌明,张朔,陈晓,等.应变硬化水泥基复合材料增强钢筋混凝土构件受弯性能试验研究[J].混凝土与水泥制品,2024(11):65-69.

HOU C M,ZHANG S,CHEN X,et al.Experimental study on bending performance of strain hardening cementitious composite material strengthening reinforced concrete components[J].China Concrete and Cement Products,2024(11):65-69.

浏览量:
1000
摘   要:设计了1组钢筋混凝土梁构件(RC)和3组应变硬化水泥基复合材料增强钢筋混凝土梁构件(U-10、U-30、U-50),研究了应变硬化水泥基复合材料层厚度(0、10、30、50 mm)对构件受弯性能的影响。结果表明:与RC构件相比,U-10、U-30和U-50构件的承载能力分别提高了16.5%、34.8%和61.0%;在加载过程中,纵向钢筋先屈服,然后应变硬化水泥基复合材料增强层开始承担荷载,且增强层表面出现众多细小裂缝,此后,部分细小裂缝局部化,增强层韧性逐渐丧失,承载能力下降,并最终保持与钢筋混凝土基梁一致。 Abstract: One set of reinforced concrete beam components(RC) and three sets of strain hardened cementitious composite material strengthening reinforced concrete beam components(U-10, U-30, U-50) were designed, and the effects of strain hardened cementitious composite material layer thickness(0, 10, 30, 50 mm) on the bending performance of components were investigated. The results show that compared with RC components, the bearing capacity of U-10, U-30, and U-50 components are increased by 16.5%, 34.8%, and 61.0%, respectively. During the loading process, the longitudinal steel bars yield first, and then the strain hardened cementitious composite reinforcement layer begins to bear the load, and numerous small cracks appear on the surface of the reinforcement layer. Afterwards, some of the small cracks localize, and the toughness of the reinforcement layer gradually decreases, resulting in a decrease in bearing capacity and ultimately maintaining consistency with the reinforced concrete foundation beam.
英文名 : Experimental study on bending performance of strain hardening cementitious composite material strengthening reinforced concrete components
刊期 : 2024年第11期
关键词 : 应变硬化水泥基复合材料;钢筋混凝土构件;受弯性能;破坏形态;承载能力
Key words : Strain hardening cementitious composite material; Reinforced concrete component; Bending performance; Failure mode; Bearing capacity
刊期 : 2024年第11期
DOI : 10.19761/j.1000-4637.2024.11.065.05
文章编号 :
基金项目 : 江苏省自然科学基金资助项目(BK20211281);广东电网有限责任公司基建技术创新专题项目。
作者 : 侯昌明1,张 朔1,陈 晓1,杨智峰1,张永兴2,*
单位 : 1.广东电网有限责任公司佛山供电局,广东 佛山 528010;2.南京林业大学 土木工程学院, 江苏 南京 210037

侯昌明1,张 朔1,陈 晓1,杨智峰1,张永兴2,*

侯昌明,张朔,陈晓,等.应变硬化水泥基复合材料增强钢筋混凝土构件受弯性能试验研究[J].混凝土与水泥制品,2024(11):65-69.

HOU C M,ZHANG S,CHEN X,et al.Experimental study on bending performance of strain hardening cementitious composite material strengthening reinforced concrete components[J].China Concrete and Cement Products,2024(11):65-69.

摘要
参数
结论
参考文献
引用本文

摘   要:设计了1组钢筋混凝土梁构件(RC)和3组应变硬化水泥基复合材料增强钢筋混凝土梁构件(U-10、U-30、U-50),研究了应变硬化水泥基复合材料层厚度(0、10、30、50 mm)对构件受弯性能的影响。结果表明:与RC构件相比,U-10、U-30和U-50构件的承载能力分别提高了16.5%、34.8%和61.0%;在加载过程中,纵向钢筋先屈服,然后应变硬化水泥基复合材料增强层开始承担荷载,且增强层表面出现众多细小裂缝,此后,部分细小裂缝局部化,增强层韧性逐渐丧失,承载能力下降,并最终保持与钢筋混凝土基梁一致。

Abstract: One set of reinforced concrete beam components(RC) and three sets of strain hardened cementitious composite material strengthening reinforced concrete beam components(U-10, U-30, U-50) were designed, and the effects of strain hardened cementitious composite material layer thickness(0, 10, 30, 50 mm) on the bending performance of components were investigated. The results show that compared with RC components, the bearing capacity of U-10, U-30, and U-50 components are increased by 16.5%, 34.8%, and 61.0%, respectively. During the loading process, the longitudinal steel bars yield first, and then the strain hardened cementitious composite reinforcement layer begins to bear the load, and numerous small cracks appear on the surface of the reinforcement layer. Afterwards, some of the small cracks localize, and the toughness of the reinforcement layer gradually decreases, resulting in a decrease in bearing capacity and ultimately maintaining consistency with the reinforced concrete foundation beam.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)与RC构件相比,当应变硬化水泥基复合材料增强层厚度分别为10、30和50 mm时,U-10、U-30和U-50构件的承载能力分别提高了16.5%、34.8%和61.0%。
(2)在应变硬化水泥基复合材料增强钢筋混凝土梁构件的破坏过程中,钢筋混凝土基梁中的纵向钢筋先屈服,然后应变硬化水泥基复合材料增强层开始承担荷载,且增强层表面出现众多细小裂缝。此后,部分细小裂缝局部化,增强层韧性逐渐丧失,并失去约束钢筋混凝土基梁开裂的能力,导致增强层承载能力下降,并最终保持与钢筋混凝土基梁一致。

(3)当应变硬化水泥基复合材料增强层的厚度较小时,增强层上出现的细小裂缝从钢筋混凝土基梁既有裂缝处逐渐向增强层底部扩展;当应变硬化水泥基复合材料增强层的厚度逐渐增大时,增强层上细小裂缝的扩展受钢筋混凝土基梁既有裂缝引起的增强层应力集中和构件弯曲效应二者的共同作用,且随着加载的继续,弯曲效应逐渐占据主导地位。

[1] 杨石刚,罗泽,许继恒,等.侵彻爆炸作用下钢纤维混凝土结构的破坏模式[J].爆炸与冲击,2024,44(1):151-163.
[2] 李家兴,杨勇新,贾彬,等.纤维混凝土中聚乙烯醇纤维分散性试验研究[J].建筑结构,2023,53(12):91-97.
[3] 金浏,范美妤,余文轩,等.低温下玄武岩纤维混凝土压缩破坏及尺寸效应试验研究[J/OL].工程力学,2024(3):1-10[2024-10-14].http://kns.cnki.net/kcms/detail/11.2595.O3.20240304.1809.
064.html.
[4] 徐礼华,李彪,池寅,等.钢-聚丙烯混杂纤维混凝土单轴循环受压应力-应变关系研究[J].建筑结构学报,2018,39(4):140-152.
[5] 李兵,林煜期,王宏,等.低坍落度聚丙烯纤维混凝土的高温后性能研究[J].科学技术与工程,2021,21(4):1522-1528.
[6] 李庆华,徐世烺.超高韧性水泥基复合材料基本性能和结构应用研究进展[J].工程力学,2009,26(增刊2):23-67.
[7] 孙晨,丁铸.PVA纤维改性磷酸盐水泥材料的研究[J].混凝土与水泥制品,2016(12):44-47.
[8] LI V C,WU H C.Conditions for pseudo strain hardening in fiber reinforced brittle matrix composites[J].Construction and Building Materials,2004,18(1):9-19.
[9] LI Q H,GAO X,XU S L.Multiple effects of nano-SiO2 and hybrid fibers on properties of high toughness fiber reinforced cementitious composites with high-volume fly ash [J].Cement and Concrete Composites,2016,72:201-212.
[10] 田砾,王飞,赵铁军,等.骨料级配对应变硬化水泥基材料力学性能的影响[J].青岛理工大学学报,2010,31(2):8-11.
[11] YERMAK N,PLIYA P,BEAUCOUR A L,et al.Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties[J].Construction and Building Materials,2017,132:240-250.
[12] 车佳玲,郭紫薇,张艺馨,等.沙漠砂制备工程水泥基复合材料单轴拉伸性能分析[J].建筑结构,2022,52(增刊1):1597-1603.
[13] 刘曙光,闫敏,闫长旺,等.聚乙烯醇纤维强化水泥基复合材料的抗盐冻性能[J].吉林大学学报(工学版),2012,42(1):63-67.
[14] 徐世烺,王楠,尹世平.超高韧性水泥基复合材料加固钢筋混凝土梁弯曲控裂试验研究[J].建筑结构学报,2011,32(9):115-122.
[15] SHIN S K,KIM K,LIM Y M.Investigation of the strengthening effect of DFRCC applied to plain concrete beams[J].Cement and Concrete Composites,2007,29(2):465-473.
[16] 王卓琳,李向民,高润东,等.纤维增强水泥基复合材料面层加固砖墙抗震性能试验研究[J].建筑结构,2021,51(4):17-25,16.
[17] 张永兴.应变硬化水泥基复合材料构件剪切破坏评价方法研究[J].土木工程学报,2013,46(12):66-73.
[18] 张永兴.应变硬化水泥基复合材料加固钢筋混凝土构件弯曲破坏分析方法研究[J].建筑结构学报,2013,34(12):121-127.

侯昌明,张朔,陈晓,.应变硬化水泥基复合材料增强钢筋混凝土构件受弯性能试验研究[J].混凝土与水泥制品,2024(11):65-69.

HOU C M,ZHANG S,CHEN X,et al.Experimental study on bending performance of strain hardening cementitious composite material strengthening reinforced concrete components[J].China Concrete and Cement Products,2024(11):65-69.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州