[1] 赵日宏.某工程大体积混凝土施工质量与安全保证措施研究[J].建筑安全,2019,34(10):28-30.
[2] ZHANG X,AKBER M Z,ZHENG W.Prediction of seven-day compressive strength of field concrete[J].Construction and Building Materials,2021,305:124604.
[3] 宋颖彤,胡骏,胡家兵,等.采用成熟度理论预测海工混凝土抗压强度[J].新型建筑材料,2017,44(9):15-18.
[4] ZEYAD A M,TAYEH B A,ADESINA A,et al.Review on effect of steam curing on behavior of concrete[J].Cleaner Materials,2022,3:100042.
[5] MILLER D,HO N M,TALEBIAN N.Monitoring of in-place strength in concrete structures using maturity method—An overview[J].Structures,2022,44:1081-1104.
[6] 刘盼.超声脉冲测速法无损检测水工混凝土质量分析应用[J].黑龙江水利科技,2022,50(12):167-169.
[7] 吕春梅.新拌混凝土质量现场检测技术的应用研究[J].福建建材,2016(4):13-15.
[8] 胡定宇.基于机器学习和优化算法的混凝土性能预测及配合比设计[D].重庆:重庆交通大学,2022.
[9] 陈子祎,刘文白.基于智能算法的河港码头混凝土碳化深度预测[J].混凝土,2022(7):178-182.
[10] AKPINAR P,KHASHMAN A.Intelligent classification system for concrete compressive strength[J].Procedia Computer Science,2017,120:712-718.
[11] OMRAN B A,CHEN Q,JIN R.Comparison of data mining techniques for predicting compressive strength of environmentally friendly concrete[J].Journal of Computing in Civil Engineering,2016,30(6):04016029.
[12] NADERPOUR H,RAFIEAN A H,FAKHARIAN P.Compressive strength prediction of environmentally friendly concrete using artificial neural networks[J].Journal of Building Engineering,2018,16:213-219.
[13] 杨雅勋,张伟德,于海波,等.基于改进支持向量机的超声参数与受载混凝土应力状态研究[J].振动与冲击,2023,42(2):175-181,224.
[14] JUNCAI X,QINGWEN R,ZHENZHONG S.Prediction of the strength of concrete radiation shielding based on LS-SVM[J].Annals of Nuclear Energy,2015,85:296-300.
[15] CHOU J S,CHIU C K,FARFOURA M,et al.Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques[J].Journal of Computing in Civil Engineering,2011,25(3):242-253.
[16] 张研,王鹏鹏,吴哲康.基于相关向量机模型的混凝土综合性能预测[J].硅酸盐通报,2022,41(1):118-125,152.
[17] 陈卫卫,王卫星,张仁瑞,等.基于机器学习XGBoost、引导滤波及矩的自由落体岩石块度在线检测[J].兰州大学学报(自然科学版),2021,57(5):701-710.
[18] 刘尚昂.基于XGBoost算法的建筑工程造价预测研究[D].北京:北京建筑大学,2022.
[19] 佟大威,杨传会,余佳,等.基于XGBoost-PSO的混凝土重力坝体型多目标优化设计[J].河海大学学报(自然科学版),2023,51(3):91-98.
[20] 徐秀华.海水环境灌注桩高性能混凝土配合比设计及应用[J].混凝土与水泥制品,2016(9):15-18.
[21] 周思屹.大掺量粉煤灰对砂浆和混凝土性能影响的试验研究[D].郑州:华北水利水电大学,2020.
[22] 王俊杰.粉煤灰和矿渣粉在云南省高速公路工程混凝土中的应用研究[D].西安:西安建筑科技大学,2019.
[23] 石玉光,白雪燕.复合掺合料对混凝土基本性能的影响研究[J].混凝土与水泥制品,2022(11):84-88.
[24] 廖灵青.大掺量矿物掺合料混凝土抗氯盐侵蚀性能研究[D].南宁:广西大学,2016.
[25] 叶宇巡,马成畅,黄达.废胎橡胶用量对保温砂浆导热系数的影响与神经网络预测[J].新型建筑材料,2014,41(5):92-95,100.
[26] MOHAMED O,KEWALRAMANI M,ATI M,et al.Application of ANN for prediction of chloride penetration resistance and concrete compressive strength[J].Materialia,2021,17:101123.
[27] SONEBI M,CEVIK A,GRUNEWALD S,et al.Modelling the fresh properties of self-compacting concrete using support vector machine approach[J].Construction and Building Materials,2016,106:55-64.
[28] 郭磊,高航,田青青,等.基于XGBoost-LSTM的CSG抗压强度预测[J].建筑材料学报,2023,26(6):631-637.
[29] NGUYEN N H,ABELLAN-GARCIA J,LEE S,et al.Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model[J].Journal of Building Engineering,2022,52:104302.
[30] YAN H,HE Z,GAO C,et al.Investment estimation of prefabricated concrete buildings based on XGBoost machine learning algorithm[J].Advanced Engineering Informatics,2022,54:101789.