苏州混凝土水泥制品研究院有限公司

头部文案

发布时间:2020-01-06 00:00:00
全国建材科技期刊
全国中文核心期刊
中国科技论文统计源期刊
万方数据-数字化期刊群入网期刊
中国学术期刊(光盘版)全文收录期刊
华东地区优秀科技期刊
江苏省期刊方阵“双效期刊”
中国期刊网全文收录期刊
中国科技期刊数据库全文收录期刊
掺再生砖粉UHPC高温后的残余断裂能研究
Study on residual fracture energy of UHPC with recycled brick powder after high temperature
2025年第2期
再生砖粉(RBP);超高性能混凝土(UHPC);冷却方式;断裂能;计算模型
Recycled brick powder(RBP); Ultra-high performance concrete(UHPC); Cooling method; Fracture energy; Calculation model
2025年第2期
10.19761/j.1000-4637.2025.02.053.06
国家自然科学基金项目(52178258);河南省交通运输厅科技项目(2021J3)。
杨建强
郑州市交通基本建设质量检测站,河南 郑州 450008

杨建强

杨建强.掺再生砖粉UHPC高温后的残余断裂能研究[J].混凝土与水泥制品,2025(2):53-57,62.

YANG J Q.Study on residual fracture energy of UHPC with recycled brick powder after high temperature[J].China Concrete and Cement Products,2025(2):53-57,62.

浏览量:
1000
英文名 : Study on residual fracture energy of UHPC with recycled brick powder after high temperature
刊期 : 2025年第2期
关键词 : 再生砖粉(RBP);超高性能混凝土(UHPC);冷却方式;断裂能;计算模型
Key words : Recycled brick powder(RBP); Ultra-high performance concrete(UHPC); Cooling method; Fracture energy; Calculation model
刊期 : 2025年第2期
DOI : 10.19761/j.1000-4637.2025.02.053.06
文章编号 :
基金项目 : 国家自然科学基金项目(52178258);河南省交通运输厅科技项目(2021J3)。
作者 : 杨建强
单位 : 郑州市交通基本建设质量检测站,河南 郑州 450008

杨建强

杨建强.掺再生砖粉UHPC高温后的残余断裂能研究[J].混凝土与水泥制品,2025(2):53-57,62.

YANG J Q.Study on residual fracture energy of UHPC with recycled brick powder after high temperature[J].China Concrete and Cement Products,2025(2):53-57,62.

摘要
参数
结论
参考文献
引用本文

摘   要:研究了目标温度(25、200、400、600、800 ℃)、再生砖粉(RBP)取代率(0、30%、50%)、冷却方式(自然冷却、水冷却)对掺RBP的超高性能混凝土(RBP-UHPC)试件荷载-挠度曲线、残余断裂能的影响,并基于此建立了高温后RBP-UHPC残余断裂能的计算模型。结果表明:高温(200~800 ℃)后,RBP-UHPC试件的荷载-挠度曲线呈弯曲硬化特征;自然冷却和水冷却RBP-UHPC试件的残余断裂能随目标温度的升高均呈先增后降的趋势;在自然冷却条件下,当目标温度为25、400、600、800 ℃时,RBP-UHPC试件的残余断裂能随RBP取代率的增加呈先增后降的趋势,而当目标温度为200 ℃时,RBP-UHPC试件的残余断裂能随RBP取代率的增加呈先降后增的趋势;相较于水冷却,高温(200~800 ℃)后自然冷却RBP-UHPC试件的残余断裂能相对更高;建立的高温后RBP-UHPC残余断裂能计算模型的相关系数R2大于0.920,精度较高。

Abstract: The effects of target temperature(25, 200, 400, 600, 800 ℃), substitution rate of recycled brick powder(RBP)  (0, 30%, 50%), and cooling method(naturally cooled, water cooled) on the load-deflection curves and residual fracture energy of ultra-high performance concrete specimens with RBP(RBP-UHPC) were investigated, and based on this, a model for calculating the residual fracture energy of RBP-UHPC after high temperature was established. The results show that, the load-deflection curves of RBP-UHPC specimens after high temperature(200~800 ℃) show the bending-hardening characteristics. The residual fracture energy of naturally cooled and water cooled RBP-UHPC specimens shows the tendency of first increasing and then decreasing with the increase of the target temperature. Under the condition of naturally cooled, when the target temperatures are 25, 400, 600 and 800 ℃, the residual fracture energy of RBP-UHPC specimens first increases and then decreases with the increase of the substitution rate of RBP, and when the target temperature is 200 ℃, the residual fracture energy of RBP-UHPC specimens first decreases and then increases with the increase of the substitution rate of RBP. Compared to water cooled, the residual fracture energy of naturally cooled RBP-UHPC specimens after high temperature(200~800 ℃) is relatively higher. The correlation coefficient R2 of the model for calculating the residual fracture energy of RBP-UHPC after high temperature is more than 0.920, indicating that the accuracy of the model is high.

扫二维码用手机看
未找到相应参数组,请于后台属性模板中添加

(1)高温(200~800 ℃)后RBP-UHPC试件的荷载-挠度曲线表现出弯曲硬化特征。
(2)高温(200~800 ℃)后自然冷却RBP-UHPC试件的残余断裂能随目标温度的升高均呈先增后降的趋势。当目标温度为200 ℃时,RBP0、RBP50试件的残余断裂能均相对最大,较目标温度为25 ℃时分别提高了7.45%和20.85%;当目标温度为400 ℃时,RBP30试件的残余断裂能相对最大,较目标温度为25 ℃时提高了5.65%。
(3)当目标温度分别为25、400、600、800 ℃时,自然冷却RBP-UHPC试件的残余断裂能均随RBP取代率的增加呈先增后降的趋势,其中,RBP30试件的残余断裂能均相对最优,较RBP0试件分别提升了4.20%、52.60%、27.97%、13.90%;当目标温度为200 ℃时,RBP-UHPC试件的残余断裂能随RBP取代率的增加呈先降后增的趋势,但变化幅度均较小。
(4)在自然冷却和水冷却的方式下,高温(200~800 ℃)后RBP-UHPC试件的残余断裂能均随目标温度的升高呈先增后降的趋势,其中,高温后自然冷却RBP-UHPC试件的残余断裂能相对更高。
(5)基于试验结果建立了高温(200~800 ℃)后RBP-UHPC残余断裂能的计算模型,其相关系数R2大于0.920,精度较高。

[1] LARRARD F D,SEDRAN T.Optimization of ultra-high-performance concrete by the use of a packing model[J].Cement and Concrete Research,1994,24(6):997-1009.
[2] ROSSELI S R,SIDEK M N M,SAMAN H M,et al.Ultra high-performance concrete as alternative repair method:A Review[J].Journal of Failure Analysis and Prevention,2021,21(6):2072-2080.
[3] AKHNOUKH A K,BUCKHALTER C.Ultra-high-performance concrete:constituents,mechanical properties,applications and current challenges[J].Case Studies in Construction Materials,2021,15:e00559.
[4] ABBAS S,NEHDI M L, SALEEM M A.Ultra-high performance concrete:mechanical performance,durability,sustainability and implementation challenges[J].International Journal of Concrete Structures and Materials,2016,10(3):271-295.
[5] GU C P,YE G,SUN W.Ultrahigh performance concrete-properties, applications and perspectives[J].Science China Technological Sciences,2015,58(4):587-599.
[6] BRUHWILER E.UHPFRC technology to enhance the performance of existing concrete bridges[J].Structure and Infrastructure Engineering,2020,16(1):94-105.
[7] BA?譕ANT Z P,ZHOU Y.Why did the world trade center collapse?—simple analysis[J].International Journal of Structural Stability and Dynamics,2001,1(4):603-615.
[8] KORPA A,KOWALD T,TRETTIN R.Phase development in normal and ultra-high performance cementitious systems by quantitative X-ray analysis and thermoanalytical methods[J].Cement and Concrete Research,2009,39(2):69-76.
[9] HE Z H,SHEN M L,SHI J Y,et al.Recycling coral waste into eco-friendly UHPC:Mechanical strength, microstructure, and environmental benefits[J].The Science of the Total Environment,2022,836:155424.
[10] SHAMSAD A,KHALED O M,SAHEED K A,et al.Influence of admixing natural pozzolan as partial replacement of cement and microsilica in UHPC mixtures[J].Construction and Building Materials,2019,198:437-444.
[11] WILD S,GAILIUS A,HANSEN H,et al.Pozzolanic properties of a variety of European clay bricks[J].Building Research and Information,1997,25(3):170-175.
[12] LIU Q,LI B,XIAO J,et al.Utilization potential of aerated concrete block powder and clay brick powder from C&D waste[J].Construction and Building Materials,2020,238:117721.
[13] BARADARAN N A,NEMATZADEH M.The effect of elevated temperatures on the mechanical properties of concrete with fine recycled refractory brick aggregate and aluminate cement[J].Construction and Building Materials,2017,147(30):865-875.
[14] YE H,FENG N,LING-HU Y,et al.Research on fire resistance of ultra-high-performance concrete[J].Advances in Materials Science and Engineering,2012,2012:1-7.
[15] SCHNEIDER U,DIEDERICHS U.Verhalten von ultrahochfesten betonen(UHPC) unter brandbeanspruchung[J].Beton-und Stahlbetonbau,2003,98(7):408-417.
[16] 杨娟,朋改非.钢纤维类型对超高性能混凝土高温爆裂性能的影响[J].复合材料学报,2018,35(6):1599-1608.
[17] 于跟社,邓宗才,王珏.多组合混杂纤维增强UHPC断裂特性试验研究[J].北京工业大学学报,2023,49(5):547-557.
[18] 聂洁,李传习,钱国平,等.钢纤维形状与掺量对UHPC施工及力学特性的影响[J].材料导报,2021,35(4):4042-4052.
[19] 朋改非,牛旭婧,赵怡琳.异形钢纤维对超高性能混凝土增强增韧的影响[J].建筑材料学报,2016,19(6):1013-1018.
[20] 孔德成,安明喆,贾方方.聚丙烯粗纤维超高性能混凝土的断裂性能[J].公路,2021,66(5):281-285.
[21] 牛旭婧,朋改非,尚亚杰,等.热水-干热组合养护对超高性能混凝土力学性能的影响[J].硅酸盐学报,2018,46(8):1141-1148.
[22] 李传习,聂洁,冯峥,等.振动搅拌对超高性能混凝土施工及力学性能影响[J].硅酸盐通报,2019,38(8):2586-2594.
[23] YUAN C F,FU W C,ALI R,et al.Study on mechanical properties and mechanism of recycled brick powder UHPC[J].Buildings,2022,12(10):1622.
[24] 杨松森,徐菁,赵铁军.混凝土断裂能测试方法研究[J].实验力学,2009,24(4):327-333.

杨建强.掺再生砖粉UHPC高温后的残余断裂能研究[J].混凝土与水泥制品,2025(2):53-57,62.

YANG J Q.Study on residual fracture energy of UHPC with recycled brick powder after high temperature[J].China Concrete and Cement Products,2025(2):53-57,62.

相关文件

暂时没有内容信息显示
请先在网站后台添加数据记录。

关注《混凝土与水泥制品》

总访问量 468,401   网站统计

官方微信公众号关闭
苏州混凝土水泥制品研究院有限公司

关于我们    |    联系我们    |    订购杂志    |    回到顶部

版权所有:中国混凝土与水泥制品网  苏ICP备10086386号   网站建设:中企动力 苏州

版权所有:中国混凝土与水泥制品网

苏ICP备10086386号

网站建设:中企动力 苏州