[1] 韩瑞杰,程忠庆,高屹,等.多层石墨烯/钢纤维砂浆的制备及力学性能研究[J].混凝土与水泥制品,2020(3):77-81.
[2] 倪蔡辉,吕生华,朱琳琳,等.氧化石墨烯/发泡水泥基材料的微观结构及性能[J].混凝土与水泥制品,2017(1):57-61.
[3] 徐义洪,范颖芳.盐冻环境下氧化石墨烯混凝土力学损伤试验研究[J].混凝土与水泥制品,2019(5):9-12,18.
[4] YANG X,QIU L,CHENG C,et al.Ordered Gelation of Chemically Converted Graphene for Next-generation Electroconductive Hydrogel Films[J].Angewandte Chemie International Edition,2011,50(32):7325-7328.
[5] LI D,MUELLER M B,GILJE S,et al.Processable Aqueous Dispersions of Graphene Nanosheets[J].Nature Nanotechnology,2008,3(2):101-105.
[6] LOTYA M,KING P J,KHAN U,et al.High-Concentration, Surfactant-stabilized Graphene Dispersions[J].ACS Nano,2010,4(6):3155-3162.
[7] PU N W,WANG C A,LIU Y M,et al.Dispersion of Graphene in Aqueous Solutions with Different Types of Surfactants and the Production of Graphene Films by Spray or Drop Coating[J].Journal of the Taiwan Institute of Chemical Engineers,2012,43(1):140-146.
[8] 魏伟,吕伟,杨全红.高浓度石墨烯水系分散液及其气液界面自组装膜[J].新型炭材料,2011,26(1):36-40.
[9] 徐凯丽.石墨烯-水泥基复合材料的制备及其功能性研究[D].南京:东南大学,2018.
[10] 李泽鑫.石墨烯改性水泥基材料力学及变形性能研究[D].杭州:浙江工业大学,2019.
[11] 王腾腾.高分散性石墨烯的制备及其水泥基复合材料性能研究[D].青岛:青岛理工大学,2019.
[12] 赵汝英.石墨烯的分散性及其水泥基复合材料的耐久性[D].大连:大连理工大学,2018.
[13] 杨凌俊,袁小亚.氧化石墨烯复掺石墨烯对水泥砂浆力学性能的提升及机理研究[J].功能材料,2019,50(12):12089-12096.
[14] 陈宝锐,吴其胜,诸华军,等.石墨烯/水泥基复合材料的制备与性能[J].材料科学与工程学报,2018,36(4):650-655.
[15] 姜瑞双.石墨烯水性分散及其水泥基复合材料力学性能[D].大连:大连理工大学,2017.
[16] LI X,KORAYEM A H,LI C,et al.Incorporation of Graphene Oxide and Silica Fume into Cement Paste: A Study of Dispersion and Compressive Strength[J].Construction and Building Materials,2016,123:327-335.
[17] 罗素蓉,李欣,林伟毅,等.氧化石墨烯分散方式对水泥基材料性能的影响[J].硅酸盐通报,2020,39(3):677-684.
[18] 袁小亚,高军,王远贵,等.氧化石墨烯分散方式及其对水泥砂浆力学性能的影响[J].混凝土与水泥制品,2020(8):18-22,26.
[19] ZHAO L,GUO X,LIU Y,et al.Investigation of Dispersion Behavior of GO Modified by Different Water Reducing Agents in Cement Pore Solution[J].Carbon,2018,127:255-269.
[20] 吕生华,李莹,赵浩然,等.氧化石墨烯在水泥基体中的分散性及对其结构和性能的影响[J].精细工,2016,33(5):589-595,600.
[21] 吕生华,张佳,朱琳琳,等.氧化石墨烯对水泥基复合材料微观结构的调控作用及对抗压抗折强度的影响[J].化工学报,2017,68(6):2585-2595.
[22] 李相国,任钊锋,徐朋辉,等.氧化石墨烯复合PVA纤维增强水泥基材料的力学性能及耐久性研究[J].硅酸盐通报,2018,37(1):245-250.
[23] MUTHU M,YANG E H,UNLUER C.Resistance of Graphene Oxide-modified Cement Pastes to Hydrochloric Acid Attack[J].Construction and Building Materials,2021,273:121990-121998.
[24] MOHAMMED A,SANJAYAN J G,NAZARI A,et al.TheRole of Graphene Oxide in Limited Long-term Carbonation of Cement-based Matrix[J].Construction and Building Materials,2018,168:858-866.
[25] 龚建清,林立.氧化石墨烯/碳纳米管水泥基复合材料的抗冻性研究[J].硅酸盐通报,2018,37(11):3410-3415.
[26] 陈黎.石墨烯水泥基导电复合材料性能研究及冻融循环的影响[J].公路交通科技(应用技术版),2019,15(10):37-40.
[27] DU H J,GAO H J,DAI PANG S.Improvement in Concrete Resistance Against Water and Chloride Ingress by Adding Graphene Nanoplatelet[J].Cement and Concrete Research,2016,83:114-123.
[28] 陈妤,蒋晓菲,刘荣桂,等.石墨烯纳米片对水泥砂浆抗折抗压性能的影响[J].混凝土,2021(2):106-109.
[29] 陈佳敏,夏海廷,林志伟,等.不同养护龄期和水灰比下纳米石墨烯片水泥基复合材料力学性能研究[J].硅酸盐通报,2020,39(6):1703-1708.
[30] 傅佳丽.石墨烯对水泥基材料力学和电学性能的影响[D].杭州:浙江工业大学,2019.
[31] KIAMAHALLEH M V,GHOLAMPOUR A,TRAN D N H,et al.Physiochemical and Mechanical Properties of Reduced Graphene Oxide-cement Mortar Composites: Effect of Reduced Graphene Oxide Particle Size[J].Construction and Building Materials,2020,250:118832-118837.
[32] SUN H F,LING L,REN Z L,et al.Effect of Graphene Oxide/Graphene Hybrid on Mechanical Properties of Cement Mortar and Mechanism Investigation[J].Nanomaterials,2020,10(1):1-13.
[33] 袁小亚,曾俊杰,高军,等.氧化石墨烯与石墨烯复掺对水泥砂浆性能影响研究[J].重庆交通大学学报(自然科学版),2019,38(9):45-50.
[34] 吕生华,张佳,罗潇倩,等.氧化石墨烯/水泥基复合材料的微观结构和性能[J].材料研究学报,2018,32(3):233-240.
[35] BAI S Y.Research on Electrical Conductivity of Graphene/Cement Composites[J].Advances in Cement Research,2020,32(2):45-52.
[36] BAI S Y,JIANG L H,XU N,et al.Enhancement of Mechanical and Electrical Properties of Graphene/Cement Composite Due to Improved Dispersion of Graphene by Addition of Silica Fume[J].Construction and Building Materials,2018,164:433-441.
[37] 花蕾,潘晓燕.石墨烯水泥基复合材料早龄期电学及力学性能的研究[J].低温建筑技术,2018,40(3):6-12.
[38] 钱锋,刘宪昌.石墨烯增强水泥基复合材料的制备及热电性能研究[J].功能材料,2020,51(10):10152-10156.
[39] JING G J,YE Z M,WU J M,et al.Introducing Reduced Graphene Oxide to Enhance the Thermal Properties of Cement Composites[J].Cement and Concrete Composites,2020,109:103559-103565.
[40] 马颖,安博星,王丹,等.石墨烯/水泥复合材料的制备及电学、压敏性能研究[J].混凝土,2015(9):72-76.
[41] 张翼,张庭瑜.多层石墨烯/水泥复合材料的制备及压敏性能研究[J].功能材料,2020,51(10):10089-10093,10151.
[42] XU J M,ZHANG D.Pressure-Sensitive Properties of Emulsion Modified Graphene Nanoplatelets/Cement Composites[J].Cement and Concrete Composites,2017,25(7):74-82.
[43] 吴文鑫,康志斌,王洁,等.石墨烯智能混凝土在正交和斜交于受力方向的压敏响应[J].混凝土与水泥制品,2018(5):15-18.
[44] LIU Q,XU Q F,YU Q,et al.Experimental Investigation on Mechanical and Piezoresistive Properties of Cementitious Materials Containing Graphene and Graphene Oxide Nanoplatelets[J].Construction and Building Materials,2016,127: 565-568.